The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were...Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.展开更多
The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The ...The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The case study bridge used in this work was also investigated in a previous paper focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive LCA (life cycle assessment) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements yet of a higher concrete class, while cost optimization by considering extra constructability factors provided thicker sections and easier to construct. This dissimilarity in the results highlights the importance of combining environmental impact (and its associated environmental cost) and investment cost to find more material-efficient, economical, sustainable and time-effective bridge solutions.展开更多
The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transve...The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.展开更多
Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal desi...Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal design scheme of bridge structure is discussed from the aspects of safety, economy and so on in this paper.展开更多
It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containi...It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containing a variety of technical factors and uncertainties. The optimization is the selection in the constructing time, quantity of equipments and man power. Based on the calculation result of bridge rafts, an evaluating system is established, consisting of index of spacing between interior bays, raft length, truss numbers, operation difficulty and maximal bending stress. A fuzzy matter element model of optimizing selection of bridge rafts was built up by combining quantitative analysis with qualitative analysis. The method of combination weighting was used to calculate the value of weights index to reduce the subjective randomness. The sequence of schemes and the optimization resuh were gained finally based on euclid approach degree. The application result shows that it is simple and practical.展开更多
In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web str...In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.展开更多
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金Project(51178203)supported by the National Natural Science Foundation of China
文摘Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.
文摘The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environment-friendly design. The case study bridge used in this work was also investigated in a previous paper focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive LCA (life cycle assessment) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements yet of a higher concrete class, while cost optimization by considering extra constructability factors provided thicker sections and easier to construct. This dissimilarity in the results highlights the importance of combining environmental impact (and its associated environmental cost) and investment cost to find more material-efficient, economical, sustainable and time-effective bridge solutions.
文摘The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.
文摘Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal design scheme of bridge structure is discussed from the aspects of safety, economy and so on in this paper.
文摘It' s a necessary selection to support the maneuver across Yangtze River by floating bridge constructed by portable steel bridge and civilian ships. It is a comprehensive index for the scheme of bridge raft, containing a variety of technical factors and uncertainties. The optimization is the selection in the constructing time, quantity of equipments and man power. Based on the calculation result of bridge rafts, an evaluating system is established, consisting of index of spacing between interior bays, raft length, truss numbers, operation difficulty and maximal bending stress. A fuzzy matter element model of optimizing selection of bridge rafts was built up by combining quantitative analysis with qualitative analysis. The method of combination weighting was used to calculate the value of weights index to reduce the subjective randomness. The sequence of schemes and the optimization resuh were gained finally based on euclid approach degree. The application result shows that it is simple and practical.
文摘In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.