The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal ...The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed. The results can provide some theoretical guidance for the design a practical engine.展开更多
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ...Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.展开更多
The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents compa...The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion. The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction, entransy loss, work entransy, entransy dissipation, and cfficiencics for both cases of dumping and non-dumping of used source fluid. The effects of source and condensation temperatures on the system performance arc systematically investigated for optimal condition of producing maximum work or work cntransy.展开更多
In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destructi...In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.展开更多
文摘The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the working fluid and the heat reservoirs obeys the generalized law Q∝( Δ T) m , is studied. The optimal configuration and the fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed. The results can provide some theoretical guidance for the design a practical engine.
文摘Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.
基金supported by the Research Fund,Kumoh National Institute of Technology
文摘The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could bc useful in analyzing and optimizing the heat-work conversion systems. This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion. The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction, entransy loss, work entransy, entransy dissipation, and cfficiencics for both cases of dumping and non-dumping of used source fluid. The effects of source and condensation temperatures on the system performance arc systematically investigated for optimal condition of producing maximum work or work cntransy.
基金supported by the National Basic Research Program of China(Grant No.2013CB228302)
文摘In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.