期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多特征优选的Sentinel-2遥感影像林分类型分类 被引量:5
1
作者 闫国东 左雪漫 +3 位作者 陈瑾 胡喜生 周成军 巫志龙 《森林工程》 北大核心 2023年第3期12-20,共9页
为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理... 为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理特征(Te),以及基于数字高程数据计算2个地形特征指数(To),共计36个特征;利用随机森林算法分析不同特征在林分类型分类中的重要性,并利用袋外样本(Out of Band,OOB)数据与平均不纯度减少方法优选特征组合(Optimum Individuality Combination,OIC);对6种不同试验方案(O、O+To、O+To+S、O+To+S+R、O+To+S+R+Te和OIC)进行林分类型分类,并利用混淆矩阵评价分类结果。结果表明,参与林分类型分类的36个特征的重要性为2.11%~5.43%,其中,海拔因子的重要性最高,红边波段、红边光谱指数、纹理特征中均值与相关性也具有较高的重要性;单独使用原始波段对林分类型进行分类,分类精度不高,总体精度为73.26%,Kappa系数为0.64;以原始波段为基础引入其他特征,除原始波段外,其他特征均可以提高分类精度;优选特征组合(OIC)为重要性前27个特征,包含海拔、8个原始波段、7个红边光谱指数和3个纹理特征,分类精度最高,总体精度为83.13%,Kappa系数为0.77,比其余5种试验方案的总体分类精度提高了0.82%~9.87%。以Sentinel-2影像为数据源,随机森林算法优选的特征组合综合多类型特征中对林分类型分类有重要贡献的特征,从而提高了分类精度。研究结果可为GEE平台Sentinel-2影像在森林资源调查中林分类型信息的提取提供参考。 展开更多
关键词 Sentinel-2 红边光谱指数 随机森林算法 优选特征组合
下载PDF
基于改进分离阈值特征优选的秋季作物遥感分类 被引量:9
2
作者 王庚泽 靳海亮 +3 位作者 顾晓鹤 杨贵军 冯海宽 孙乾 《农业机械学报》 EI CAS CSCD 北大核心 2021年第2期199-210,共12页
为了提高秋季作物分类精度,以多时相的Sentinel 2为数据源,以生育进程相近的秋季作物为分类对象,提出一种基于Relief F算法和信息熵改进分离阈值算法(Modified ISEaTH based entropy,EMISE)的多评价准则融合特征优选算法——改进分离阈... 为了提高秋季作物分类精度,以多时相的Sentinel 2为数据源,以生育进程相近的秋季作物为分类对象,提出一种基于Relief F算法和信息熵改进分离阈值算法(Modified ISEaTH based entropy,EMISE)的多评价准则融合特征优选算法——改进分离阈值组合式特征优选算法(Modified EMISE based Relief F,ReEMISE),并分析了不同特征对秋季作物分类的重要性。首先,利用Relief F算法对特征进行初选,结合EMISE算法对2种评价准则进行融合,再优化初选特征集,进而利用随机森林(Random forest,RF)方法提取农作物种植面积,并与单评价准则的Relief F算法和EMISE算法的随机森林分类精度进行比较。同时,利用多时相光谱特征、传统指数特征、红边指数特征、纹理特征、不同时相波段差值特征、不同时相波段比值特征及优选特征,通过7组不同的特征组合提取秋季作物种植面积,分析不同特征组合对秋季作物分类精度的影响。结果表明:ReEMISE特征优选的随机森林法在特征变量为9个时精度最高,总体精度和Kappa系数分别为95.3918%和0.9397;综合多特征是提高农作物分类精度的关键,在多时相光谱特征基础上分别加入传统指数特征和红边特征,总体精度分别提高1.5021、1.5715个百分点,Kappa系数分别提高0.0198、0.0207。因此综合多特征的ReEMISE特征优选的随机森林法可以有效提高秋作物分类精度和效率。 展开更多
关键词 秋季作物 遥感分类 特征优选 改进分离阈值组合特征优选算法 随机森林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部