Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external bi...Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.展开更多
This paper presents the possibilities of job optimization in waterway with multiple locks and canals, in order to increase the system productivity. Safe navigation in such complex waterway system is very demanding. So...This paper presents the possibilities of job optimization in waterway with multiple locks and canals, in order to increase the system productivity. Safe navigation in such complex waterway system is very demanding. Some of the problems that need to be solved are: How to control traffic in a way that vessels move in opposite directions; How to resolve possible conflicts in case that more vessels try to acquire particular lock at the same time; How to avoid possible deadlocks; How to ensure the vessel passage in the shortest possible time? It is necessary to apply adequate control policy to avoid deadlocks and blocks the vessels' moving only in the case of dangerous situation. The motion of vessels can be described as the set of discrete events and states. Herein we propose deadlock avoidance algorithm for complex waterway system with multiple key resources and we use multiple re-entrant flowlines class of Petri net (MRF^PN). The solution represents deadlock prevention supervisor in a sense that vessels are stopped only in a case of immediate dangerous situation in dense traffic. The goal of this paper is to find optimal, conflict and deadlock free job schedule in CWS. In this sense, the authors developed the algorithm which integrates MRF^PN with a genetic algorithm. The algorithm deals with multi-constrained scheduling problem with shared resources. The final goals are minimization the total travel time of vessels through the waterway system.展开更多
文摘Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.
文摘This paper presents the possibilities of job optimization in waterway with multiple locks and canals, in order to increase the system productivity. Safe navigation in such complex waterway system is very demanding. Some of the problems that need to be solved are: How to control traffic in a way that vessels move in opposite directions; How to resolve possible conflicts in case that more vessels try to acquire particular lock at the same time; How to avoid possible deadlocks; How to ensure the vessel passage in the shortest possible time? It is necessary to apply adequate control policy to avoid deadlocks and blocks the vessels' moving only in the case of dangerous situation. The motion of vessels can be described as the set of discrete events and states. Herein we propose deadlock avoidance algorithm for complex waterway system with multiple key resources and we use multiple re-entrant flowlines class of Petri net (MRF^PN). The solution represents deadlock prevention supervisor in a sense that vessels are stopped only in a case of immediate dangerous situation in dense traffic. The goal of this paper is to find optimal, conflict and deadlock free job schedule in CWS. In this sense, the authors developed the algorithm which integrates MRF^PN with a genetic algorithm. The algorithm deals with multi-constrained scheduling problem with shared resources. The final goals are minimization the total travel time of vessels through the waterway system.