To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process ...With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.展开更多
The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refrac...The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.展开更多
To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on...To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on the growth of transgenic dicotyledonous plant, Agrobacterium-mediated transformation of Ppc genes into Nicotiana tabacum were carried out. Transgenic leaf plates and differentiated seedling leaves were verified by GUS histochemistry, PCR, and RT-PCR. Results showed that transgenic N. tabacum with Ppc-cDNA of E. crusgalli had relatively strong differentiation ability. However, N. tabacum after transformation of complete DNA sequence of Ppc genes in Z mays had relatively poor ability of growth. The differentiated green seedlings had the phenomenon of yellowing; and photosynthesis ability of leaves was poor. This might be caused by the misidentification and wrong splicing in transcription. This indicated that the expression rate of monocotyledonous complete DNA might be reduced in the monocotyledonous cells with relatively far genetic distances. Detection results of showed that Pn in most transgenic N. tabacum with Ppc-cDNA of E. crusgalli was was higher than that in control, which preliminarily proved that PEPC of monocotyledonous plant E. crusgalli had certain regulatory effects on photosynthesis of N. tabacum.展开更多
Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we rev...Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we review recent progress in high-speed and high-spectral-efficient optical transmission technology. We discuss spectrally efficient modulation and detection technologies that have been experimentally explored for future 100-Gb/s and above optical transmission system. Emerging methods aiming at extending system reach for noise and nonlinearity-stressed high spectral efficiency optical transmission systems have also been reviewed. We show that spectrallyefficient multilevel coding coupled with polarization multiplexing and digital coherent detection has the potential to enable 400Gb/s per channel WDM system operating with existing 50GHzspaced WDM infrastructure at a spectral efficiency of 8b/s/Hz.展开更多
This essay designed a kind of new seven-core fiber with lower crosstalk and loss, and made space division multiplexing transmission experiment based on this seven-core fiber. It is known that crosstalk has the most se...This essay designed a kind of new seven-core fiber with lower crosstalk and loss, and made space division multiplexing transmission experiment based on this seven-core fiber. It is known that crosstalk has the most serious influence in multicore fiber transmission process. Before the experiment, the affecting factors of fiber crosstalk were analyzed through simulation, such as core space, bending radius, and fiber length. Combined with the simulation analysis, the design scheme of multicore fiber with low crosstalk was obtained. Before the fiber design, various factors of influence crosstalk such as the core- to-core distance, bending radius, fiber length and so on. Based on the simulation analysis, conclusion has made on the design scheme of multi-core optimal fiber with low crosstalk. The space division multiplexing and wavelength division multiplexing technology, was adopted to conduct seven-core optical fiber transmission of 58.7kin.The crosstalk of adjacent core was suppressed to as low as 45dB / km, the attenuation of inner core was 0.24dB/ km, the outer cores' 0.32dB/km. Different bit error rate (BER) performances were also studied under different conditions, through reasonably designing the system to reduce the error rate, improve the performance of the system, and realize long distance and large capacity transmission with fiber.展开更多
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m...In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.展开更多
In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fi...In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.展开更多
A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used....A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.展开更多
Al was evaporated on the surface of PS which was prepared by electrochemical anodization in HF solution to form a metal/PS/Si/Al junction.The photoconductivity spectrum and other features were measured which present t...Al was evaporated on the surface of PS which was prepared by electrochemical anodization in HF solution to form a metal/PS/Si/Al junction.The photoconductivity spectrum and other features were measured which present that PS has a stronger visible photoconductivity effect,specially in orange-yellow region.An analysis and discussion were made on it accordingly.展开更多
The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in th...The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in the FM. For the triplet-SG of Sr_2RuO_4,we consider two-dimensional f-wave order parameter symmetries having nodes within the RuO_2 plane,which reasonably describe both thermodynamic and thermal conductivity data.It is shown that the ferromagnetic exchange splitting gives rise to a decrease in the differential conductance,the average current,and the shot noise power,while the noise power-to-current ratio is increased;the interface roughness is found to lead to a decrease in the differential conductance and the average current,and an increase in the noise power-to-current ratio.展开更多
The principle of optical fiber pressure sensing probe with common diaphragm and the method for stabilizing the laser diodes are described in this paper at first.Then we discussed the improvement in characteristics of ...The principle of optical fiber pressure sensing probe with common diaphragm and the method for stabilizing the laser diodes are described in this paper at first.Then we discussed the improvement in characteristics of the system by means of taking the techniques of reference light channel and ratio measurement.展开更多
This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, int...This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, integrates the techniques of mechatronics and computer graphics, and develops real time FBG shape sensing system and incremental shape sensing system for colonoscopies.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
In the weakly guided case, the power propagation in the core and the cladding of a left-handed material fiber is obtained by solving Maxwell’s equations. The wave-guide efficiency is analyzed at cutoff and far from c...In the weakly guided case, the power propagation in the core and the cladding of a left-handed material fiber is obtained by solving Maxwell’s equations. The wave-guide efficiency is analyzed at cutoff and far from cutoff. Far from cutoff, the wave-guide efficiency equals to 1. At cutoff, for m=0, 1, the wave-guide efficiency equals to zero; for m=2, the wave-guide efficiency approaches to infinite; for m>2, the wave-guide efficiency is less than zero, but its absolute value is larger than 1. Those are novel characteristics of left-handed material fiber.展开更多
Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper c...Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.展开更多
Modeled with a three-level-atom appropriate to 980 nm pumped amplifiers,analytical solutions have been deduced for the rate equations of erbium-doped fiber amplifiers.Various key parameters of the amplifiers have been...Modeled with a three-level-atom appropriate to 980 nm pumped amplifiers,analytical solutions have been deduced for the rate equations of erbium-doped fiber amplifiers.Various key parameters of the amplifiers have been specified.展开更多
Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
The rate equations,which is suitable to erbium-doped fiber lasers pumped at 980 nm and 1 480nm wavelengths respectively,are investigated,and analytical expressions of the threshold pump powers under two pump wavelengt...The rate equations,which is suitable to erbium-doped fiber lasers pumped at 980 nm and 1 480nm wavelengths respectively,are investigated,and analytical expressions of the threshold pump powers under two pump wavelengths are derived.As a result,some important parameters can be quantitatively specified.展开更多
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
文摘With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.
文摘The plasma resonance fiber optic sensor has a research values in theory and is widely used in engineering because of its simple structure and high sensitivity. It is a simple and sensitive method to measure the refractive index with optical fiber plasma wave. We make use of this characteristic to manufacture the plasma resonance fiber optic sensor which can detect the cure of epoxy compo site. We study the method of testing the solutions which have different refractive index with plasma resonance fiber optic sensor. A fiber optic sensing probe which has reliable performance and convenient operation for detecting the refractive index has been designed. The system for detecting the solution refractive index is developed and used to measure the refractive index of epoxy during the different phases in the cure process. Result shows that this system is credible and stable, the parameters tested are in accord with the facts.
基金Supported by the Innovation Project of Chinese Academy of Agricultural Sciences~~
文摘To compare the transformation effects of two different forms (cDNA in monocotyledonous plant Echinochloa crusgalli, DNA in monocotyledonous plant Zea mays) of phosphoenolpyruvate carboxylase (PEPC) gene (Ppc) on the growth of transgenic dicotyledonous plant, Agrobacterium-mediated transformation of Ppc genes into Nicotiana tabacum were carried out. Transgenic leaf plates and differentiated seedling leaves were verified by GUS histochemistry, PCR, and RT-PCR. Results showed that transgenic N. tabacum with Ppc-cDNA of E. crusgalli had relatively strong differentiation ability. However, N. tabacum after transformation of complete DNA sequence of Ppc genes in Z mays had relatively poor ability of growth. The differentiated green seedlings had the phenomenon of yellowing; and photosynthesis ability of leaves was poor. This might be caused by the misidentification and wrong splicing in transcription. This indicated that the expression rate of monocotyledonous complete DNA might be reduced in the monocotyledonous cells with relatively far genetic distances. Detection results of showed that Pn in most transgenic N. tabacum with Ppc-cDNA of E. crusgalli was was higher than that in control, which preliminarily proved that PEPC of monocotyledonous plant E. crusgalli had certain regulatory effects on photosynthesis of N. tabacum.
文摘Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we review recent progress in high-speed and high-spectral-efficient optical transmission technology. We discuss spectrally efficient modulation and detection technologies that have been experimentally explored for future 100-Gb/s and above optical transmission system. Emerging methods aiming at extending system reach for noise and nonlinearity-stressed high spectral efficiency optical transmission systems have also been reviewed. We show that spectrallyefficient multilevel coding coupled with polarization multiplexing and digital coherent detection has the potential to enable 400Gb/s per channel WDM system operating with existing 50GHzspaced WDM infrastructure at a spectral efficiency of 8b/s/Hz.
基金National High Technology 863 Program of China(No.2013AA013301,2013AA013403,2015AA015501,2015AA015502,2015AA015504,2015AA016901)National NSFC(No.61425022/61522501/61307086/61475024/61275158/61201151/61275074/61205066)+4 种基金Beijing Nova Program(No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003/20120005120007)the Fundamental Research Funds for the Central Universities with No.2014RC0203Fund of State Key Laboratory of IPOC(BUPT)
文摘This essay designed a kind of new seven-core fiber with lower crosstalk and loss, and made space division multiplexing transmission experiment based on this seven-core fiber. It is known that crosstalk has the most serious influence in multicore fiber transmission process. Before the experiment, the affecting factors of fiber crosstalk were analyzed through simulation, such as core space, bending radius, and fiber length. Combined with the simulation analysis, the design scheme of multicore fiber with low crosstalk was obtained. Before the fiber design, various factors of influence crosstalk such as the core- to-core distance, bending radius, fiber length and so on. Based on the simulation analysis, conclusion has made on the design scheme of multi-core optimal fiber with low crosstalk. The space division multiplexing and wavelength division multiplexing technology, was adopted to conduct seven-core optical fiber transmission of 58.7kin.The crosstalk of adjacent core was suppressed to as low as 45dB / km, the attenuation of inner core was 0.24dB/ km, the outer cores' 0.32dB/km. Different bit error rate (BER) performances were also studied under different conditions, through reasonably designing the system to reduce the error rate, improve the performance of the system, and realize long distance and large capacity transmission with fiber.
基金Projects(51705219, 51905227) supported by the National Natural Science Foundation of ChinaProject(BK20200915) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(19KJB460013) supported by the General University Science Research Project of Jiangsu Province,China。
文摘In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi ProvinceProgram for Top Young Academic Leaders of Higher Learning Institutions in Shanxi Province
文摘In order to detect the refractive index of liquid with high precision,based on modular interference,Mach-Zehnder optical fiber refractive rate sensor was studied.Sensor structure is composed of ordinary single-mode fiber and multimode fiber,according to the singlemode multimode singlemode sequence to fuse together,and the fused optical fiber is used to process the taper.As a result,the diameter of the sensing head is about 10μm.Experimental results show that,as liquid refractive index increases range from 1.33 to 1.35,the loss peak of the transmission spectrum will shift to long wave direction.
文摘A very simple scheme is presented for teleporting an unknown frequency state with the successful probability of 50%. Two acoustic-optical modulators and four narrow band photodetectors in the proposed scheme are used. One advantage of our scheme is that no Bell-state measurement is need and no any unitary transformation is performed.
文摘Al was evaporated on the surface of PS which was prepared by electrochemical anodization in HF solution to form a metal/PS/Si/Al junction.The photoconductivity spectrum and other features were measured which present that PS has a stronger visible photoconductivity effect,specially in orange-yellow region.An analysis and discussion were made on it accordingly.
文摘The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in the FM. For the triplet-SG of Sr_2RuO_4,we consider two-dimensional f-wave order parameter symmetries having nodes within the RuO_2 plane,which reasonably describe both thermodynamic and thermal conductivity data.It is shown that the ferromagnetic exchange splitting gives rise to a decrease in the differential conductance,the average current,and the shot noise power,while the noise power-to-current ratio is increased;the interface roughness is found to lead to a decrease in the differential conductance and the average current,and an increase in the noise power-to-current ratio.
文摘The principle of optical fiber pressure sensing probe with common diaphragm and the method for stabilizing the laser diodes are described in this paper at first.Then we discussed the improvement in characteristics of the system by means of taking the techniques of reference light channel and ratio measurement.
文摘This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, integrates the techniques of mechatronics and computer graphics, and develops real time FBG shape sensing system and incremental shape sensing system for colonoscopies.
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
基金This work was supported by National Nature Science Foundation of China (60277025)Shanghai Leading Academic Discipline Project (T0102)
文摘In the weakly guided case, the power propagation in the core and the cladding of a left-handed material fiber is obtained by solving Maxwell’s equations. The wave-guide efficiency is analyzed at cutoff and far from cutoff. Far from cutoff, the wave-guide efficiency equals to 1. At cutoff, for m=0, 1, the wave-guide efficiency equals to zero; for m=2, the wave-guide efficiency approaches to infinite; for m>2, the wave-guide efficiency is less than zero, but its absolute value is larger than 1. Those are novel characteristics of left-handed material fiber.
文摘Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.
文摘Modeled with a three-level-atom appropriate to 980 nm pumped amplifiers,analytical solutions have been deduced for the rate equations of erbium-doped fiber amplifiers.Various key parameters of the amplifiers have been specified.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.
文摘The rate equations,which is suitable to erbium-doped fiber lasers pumped at 980 nm and 1 480nm wavelengths respectively,are investigated,and analytical expressions of the threshold pump powers under two pump wavelengths are derived.As a result,some important parameters can be quantitatively specified.