互补集合平均经验模态分解(complementary ensemble empirical model decomposition,CEEMD)作为一种时频特征分析方法,可以较好地提取复杂非线性非平稳信号的故障特征,但其存在虚假分量,很大程度限制诊断过程中的准确性。针对该问题,提...互补集合平均经验模态分解(complementary ensemble empirical model decomposition,CEEMD)作为一种时频特征分析方法,可以较好地提取复杂非线性非平稳信号的故障特征,但其存在虚假分量,很大程度限制诊断过程中的准确性。针对该问题,提出一种基于KL散度(Kullback-Leibler divergence,KLD)的CEEMD虚假分量识别方法(KL-CEEMD)。该方法在原有CEEMD方法基础之上,进一步计算各分量IMF与原信号之间的KL散度值,从而量化各分量与原信号之间的相关性。最后通过对各个IMF的KL散度值进行聚类分析,找出虚假分量和真实分量,最终解决CEEMD的虚假分量问题。为验证KL-CEEMD的有效性,研究搭建风力机传动系统振动试验台,基于该方法对实验台实验数据以及仿真数据进行验证性研究,最终证明所提方法可以很好改善CEEMD的虚假分量问题,能够有效提取出故障信号的真实特性。展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as senso...The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.展开更多
Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The ...Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.展开更多
In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consi...In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.展开更多
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.
文摘The topic of vibration control with distributed actuators has been the subject of many researches. This paper is concerned with the vibration control of a cantilever beam equipped with piezoelectric ceramics as sensors and actuators. One piezoelectric ceramic is bonded to the structure and provides control input for the structure, while the other piezoelectric ceramic provides the feedback signal. An approach to identification and control is presented. Observation spillover is eliminated by prefiltering the sensor data. A procedure used to determine actuator and sensor location, is discussed based on the modes to be controlled. Finally, the experimental results are presented to verify the proposed method.
文摘Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.
文摘In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.