数值模拟喷水冷却过程时,界面换热系数的准确求解是保证模拟结果可靠的先决条件。本文采用反热传导法求解了6082铝合金喷水冷却界面热流密度和界面换热系数,并通过对比同一特征点的试验测量温度和计算温度,验证了反热传导法计算结果的...数值模拟喷水冷却过程时,界面换热系数的准确求解是保证模拟结果可靠的先决条件。本文采用反热传导法求解了6082铝合金喷水冷却界面热流密度和界面换热系数,并通过对比同一特征点的试验测量温度和计算温度,验证了反热传导法计算结果的可靠性。结果表明:铝合金喷水冷却过程中,界面换热经历了过渡沸腾阶段、核沸腾阶段和单相对流阶段,且过渡沸腾阶段冷却界面的热交换率明显高于核沸腾阶段;铝合金喷水冷却的界面热流密度随试样表面温度降低先增大后减小,其最大值约为4.4 MW/m^2;铝合金喷水冷却的界面换热系数随试样表面温度降低先近似线性增大后逐渐减小,其最大值出现在核沸腾换热阶段,约为23. 8 k W/m^2K。展开更多
文摘数值模拟喷水冷却过程时,界面换热系数的准确求解是保证模拟结果可靠的先决条件。本文采用反热传导法求解了6082铝合金喷水冷却界面热流密度和界面换热系数,并通过对比同一特征点的试验测量温度和计算温度,验证了反热传导法计算结果的可靠性。结果表明:铝合金喷水冷却过程中,界面换热经历了过渡沸腾阶段、核沸腾阶段和单相对流阶段,且过渡沸腾阶段冷却界面的热交换率明显高于核沸腾阶段;铝合金喷水冷却的界面热流密度随试样表面温度降低先增大后减小,其最大值约为4.4 MW/m^2;铝合金喷水冷却的界面换热系数随试样表面温度降低先近似线性增大后逐渐减小,其最大值出现在核沸腾换热阶段,约为23. 8 k W/m^2K。