A spectral numerical analysis method to analyze the Er-doped waveguide amplifiers(EDWA) in wavelength division multiplexing is presented. This model is based on finite difference beam propagation method modified by Do...A spectral numerical analysis method to analyze the Er-doped waveguide amplifiers(EDWA) in wavelength division multiplexing is presented. This model is based on finite difference beam propagation method modified by Douglas scheme, which can efficiently reduce the truncation error and time consumption. By superposing the Lorentzian function for the experimental curves, the spectral properties of EDWA can be investigated. Results show that the pump efficiency of EDWA pumped at 980nm is higher than that at 1480nm. Meanwhile, by rationally increasing the pump length and the erbium concentration, larger signal gains can be acquired. Taking account of the up-conversion and cross-relaxation effects of cooperation, the spectrum analysis of highly doped EDWA is carried out over a wider frequency band.展开更多
基金Natural Science Foundation of Shaanxi Province(2004CS110005) Research Foundation of NorthwesternPolytechnical University
文摘A spectral numerical analysis method to analyze the Er-doped waveguide amplifiers(EDWA) in wavelength division multiplexing is presented. This model is based on finite difference beam propagation method modified by Douglas scheme, which can efficiently reduce the truncation error and time consumption. By superposing the Lorentzian function for the experimental curves, the spectral properties of EDWA can be investigated. Results show that the pump efficiency of EDWA pumped at 980nm is higher than that at 1480nm. Meanwhile, by rationally increasing the pump length and the erbium concentration, larger signal gains can be acquired. Taking account of the up-conversion and cross-relaxation effects of cooperation, the spectrum analysis of highly doped EDWA is carried out over a wider frequency band.