In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused ...In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused by semiconduction as well as wave amplification by a biasing electric field are examined. Key words Piezoelectricity - Semiconductor - Wave - Attenuation - Dispersion Document code A CLC number TH11展开更多
Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply p...Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.展开更多
Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 time...Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.展开更多
The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on ...The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.展开更多
The mechanism of heat transfer enhancement by liquid film on the channel walls has been investigated in laminar mixed convective flows. The temperature distribution, velocity and mass fraction distributions, and the e...The mechanism of heat transfer enhancement by liquid film on the channel walls has been investigated in laminar mixed convective flows. The temperature distribution, velocity and mass fraction distributions, and the effects of the wetted wall temperatures and the Reynolds number on the momentum,heat and mass transfer were examined in details. Results show that the liquid film can enhance heat transfer along the wetted walls by 5-10 times.展开更多
Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to ...Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating.The influence of system parameters on the temperature field is explored.We find that for all the non-Fourier heat conduction models considered in this work,a larger Knudsen number normally leads to a higher temperature.For the DPL model,the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state.The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field,but the thermal wave speeds for these two models are different,especially for large Knudsen numbers.When the phase lag of temperature gradient is smaller,the difference between the DPL model and the improved CV model is not significant,but for the large phase lag of temperature gradient the difference becomes quite significant,especially for the large Knudsen number.In addition,the effect of the surface accommodation coefficient,which is a parameter in the slip boundary condition,on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.展开更多
文摘In this work propagation of anti-plane (SH) waves in two piezoelectric ceramic half-spaces with a thin layer of a semiconducting material between the half-spaces is studied, and wave attenuation and dispersion caused by semiconduction as well as wave amplification by a biasing electric field are examined. Key words Piezoelectricity - Semiconductor - Wave - Attenuation - Dispersion Document code A CLC number TH11
文摘Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.
基金the Nahonal NaedScience Foundation of China (No.599060()2) and the Scienhficresereh FOundahon for the Retwed Oversea Chinese
文摘Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.
基金supported by the National Key Basic Research and Development Program of China (2009CB623604)the National Natural Science Foundation of China (50990060, 51073809 and 21161160447)
文摘The hole and electron mobilities of the amorphous films of the organic semiconductor 4,4′-N,N′-dicarbazole-biphenyl (CBP) at different electric fields were measured through the time of flight (TOF) method. Based on its crystalline structure, the hole and electron mobilities of CBP were calculated. A detailed comparison between experimental and theoretical results is necessary for further understanding its charge transport properties. In order to do this, charge mobilities at zero electric field, μ(0), were deduced from experimental data as a link between experimental and theoretical data. It was found that the electron transport of CBP is less affected by traps compared with its hole transport. This unusual phenomenon can be understood through the distributions of frontier molecular orbitals. We showed that designing materials with frontier molecular orbitals localized at the center of the molecule has the potency to reduce the influence of traps on charge transport and provide new insights into designing high mobility charge transport materials.
文摘The mechanism of heat transfer enhancement by liquid film on the channel walls has been investigated in laminar mixed convective flows. The temperature distribution, velocity and mass fraction distributions, and the effects of the wetted wall temperatures and the Reynolds number on the momentum,heat and mass transfer were examined in details. Results show that the liquid film can enhance heat transfer along the wetted walls by 5-10 times.
基金The National Natural Science Foundation of China(Grant No.50876054)
文摘Based on the dual-phase-lagging(DPL)heat conduction model,the Cattaneo-Vernotte(CV)model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating.The influence of system parameters on the temperature field is explored.We find that for all the non-Fourier heat conduction models considered in this work,a larger Knudsen number normally leads to a higher temperature.For the DPL model,the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state.The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field,but the thermal wave speeds for these two models are different,especially for large Knudsen numbers.When the phase lag of temperature gradient is smaller,the difference between the DPL model and the improved CV model is not significant,but for the large phase lag of temperature gradient the difference becomes quite significant,especially for the large Knudsen number.In addition,the effect of the surface accommodation coefficient,which is a parameter in the slip boundary condition,on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.