Wireless location technology is used to locate,track and monitor the location of given target using devices such as the radio frequency identification(RFID) based on WiFi technology and the sensors. And such applicati...Wireless location technology is used to locate,track and monitor the location of given target using devices such as the radio frequency identification(RFID) based on WiFi technology and the sensors. And such applications as long term evolution(LTE) ,wireless local area networks(WLAN) ,RFID and location based service(LBS) are essential in today's wireless communications industry. In this paper,both wireless location technology and its application are proposed,where our experimental research results and theoretical innovation are included.展开更多
In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggrega...In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.展开更多
The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weede...The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weeder was manufactured and tested to navigate and control weeds in rice paddy fields, but a speed was so slow, and thus second engine-type prototype was developed. A working acreage for weed control has been attained at and up to 0.8 ha/day. Small and young weed seedlings were uprooted and destroyed by passive devices in between rows as well as hills. This robot was smoothly navigated in between rows on behalf of the guidance under camera and sensor systems and control weeds with mechanical by the use of implements such as passive rotary weeders and then weeds would be cut and buried into the soils. Also muddy water was generated during operation which was none penetrated by light for weed germination to occur. The authors concluded that the robotic was an effective alternative implement to control weeds in lowland rice paddy as long as this tool was systematically introduced into the rice fields at three time intervals, viz. 15-20 days, 25-30days, and 35-40 days after transplanting of rice seedlings.展开更多
基金National Natural Science Foundation of China ( No.61172073)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University( No.W200906)Fundamental Research Funds for the Central Universities,Beijing Jiaotong University
文摘Wireless location technology is used to locate,track and monitor the location of given target using devices such as the radio frequency identification(RFID) based on WiFi technology and the sensors. And such applications as long term evolution(LTE) ,wireless local area networks(WLAN) ,RFID and location based service(LBS) are essential in today's wireless communications industry. In this paper,both wireless location technology and its application are proposed,where our experimental research results and theoretical innovation are included.
基金This paper was supported by the National Basic Research Pro- gram of China (973 Program) under Crant No. 2011CB302903 the National Natural Science Foundation of China under Crants No. 60873231, No.61272084+3 种基金 the Natural Science Foundation of Jiangsu Province under Ca-ant No. BK2009426 the Innovation Project for Postgraduate Cultivation of Jiangsu Province under Crants No. CXZZ11_0402, No. CX10B195Z, No. CXLX11_0415, No. CXLXll 0416 the Natural Science Research Project of Jiangsu Education Department under Grant No. 09KJD510008 the Natural Science Foundation of the Jiangsu Higher Educa-tion Institutions of China under Grant No. 11KJA520002.
文摘In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.
文摘The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weeder was manufactured and tested to navigate and control weeds in rice paddy fields, but a speed was so slow, and thus second engine-type prototype was developed. A working acreage for weed control has been attained at and up to 0.8 ha/day. Small and young weed seedlings were uprooted and destroyed by passive devices in between rows as well as hills. This robot was smoothly navigated in between rows on behalf of the guidance under camera and sensor systems and control weeds with mechanical by the use of implements such as passive rotary weeders and then weeds would be cut and buried into the soils. Also muddy water was generated during operation which was none penetrated by light for weed germination to occur. The authors concluded that the robotic was an effective alternative implement to control weeds in lowland rice paddy as long as this tool was systematically introduced into the rice fields at three time intervals, viz. 15-20 days, 25-30days, and 35-40 days after transplanting of rice seedlings.