Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic infe...Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.展开更多
A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively im...A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.展开更多
基金Supported by National Natural Science Foundation of China(No.61601039)financially supported by the State Key Research Development Program of China(Grant No.2016YFC0801407)+3 种基金financially supported by the Natural Science Foundation of Beijing Information Science & Technology University(No.1625008)financially supported by the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(NO.ICDD201607)Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(NO.SKLNST-2016-2-08)financially supported by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Grant No.CIT&TCD201504056)
文摘Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.
文摘A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.