The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clust...The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.展开更多
Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a ...Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a cluster-based virtual VBLAST transmission scheme is proposed to achieve energy savings for energy-constrained wireless sensor networks. In the proposed scheme, instead of using cluster member as cooperative nodes, multiple cluster heads cooperate to form virtual antenna array so that V-BLAST based virtual MIMO transmission can be implemented. Based on the communication energy consumption model, a way to optimize the parameters for the scheme is given. In addition, detailed simulation is performed to evaluate the performance of the proposed scheme for both densely and sparsely deployed sensor networks. Theoretical analysis and simulation results verify the energy efficiency of the proposed scheme.展开更多
The majority of the energy consumption by the sensors is the energy requirement for data transmission in Wireless Sensor Networks (WSNs). Therefore, introducing mobile collectors to collect data instead of nmlti-hop...The majority of the energy consumption by the sensors is the energy requirement for data transmission in Wireless Sensor Networks (WSNs). Therefore, introducing mobile collectors to collect data instead of nmlti-hop data relay is essential. However, for rmny proposed data gathering ap-proaches, long data deNNy is the train problenm. Hence, the problem of how to decrease the energy consumption and the data deNNy needs to be solved. In this paper, a low deNNy data collection mechanism using multiple mobile collectors is pro- posed. First, a self-organization clustering algorithm is designed. Second, sensor nodes are organized into three-level clusters. Then a collection strategy based on the hierarchical structure is proposed, which includes two rules to dispatch mobile collec- tors rationally. Simulation results show that the proposed mechanism is superior to other existing approaches in terms of the reduction in energy ex-penditure and the decrease in data deNNy.展开更多
Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for ...Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.展开更多
The principle of a new optical fiber temperature transducer is presented,and ingenious design scheme of this transducer is given.Because taking the special modulation and ratio measurement,this new transducer has prov...The principle of a new optical fiber temperature transducer is presented,and ingenious design scheme of this transducer is given.Because taking the special modulation and ratio measurement,this new transducer has provided with high characteristics:experimental transmitting distance is 500m;measurement error,in the measured temperature range of 0-250℃,,is less than ±0.5℃;power consumption of the probe is less than 300μW.Finally,some points of the experiment are given.展开更多
In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data...In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data collection and transmission, and function nodes are responsible for key management. There are more than one function nodes in the cluster consulting the key generation and other security decision-making. The function nodes are the second-class security center because of the characteristics of the distributed WSNs. Secondly, It is also described that the formation of function nodes and cluster heads under the control of the former, and five kinds of keys, i.e., individual key, pairwise keys, cluster key, management key, and group key. Finally, performance analysis and experiments show that, the protocol is superior in communication and energy consumption. The delay of establishing the cluster key meets the requirements, and a multiple pairwise key which adopts the coordinated security authentication scheme is provided.展开更多
基金上海交通大学-密西根大学专项基金的资助项目名称 "Large panel integrated light transmitting and solar energy harvesting facade systems for net zero energy efficient buildings"
文摘The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.
文摘Wireless sensor network is becoming more and more popular in recent years, but energy- constrained characteristic of sensor nodes is one of the critical issues that we must consider in system design. In this paper, a cluster-based virtual VBLAST transmission scheme is proposed to achieve energy savings for energy-constrained wireless sensor networks. In the proposed scheme, instead of using cluster member as cooperative nodes, multiple cluster heads cooperate to form virtual antenna array so that V-BLAST based virtual MIMO transmission can be implemented. Based on the communication energy consumption model, a way to optimize the parameters for the scheme is given. In addition, detailed simulation is performed to evaluate the performance of the proposed scheme for both densely and sparsely deployed sensor networks. Theoretical analysis and simulation results verify the energy efficiency of the proposed scheme.
基金This paper was supported by the National Natural Science Foundation of China under Ca-ants No.60835001, No. 61104068 the Natural Science Foundation of Jiangsu Province, China un- der Crant No.BK2010200.
文摘The majority of the energy consumption by the sensors is the energy requirement for data transmission in Wireless Sensor Networks (WSNs). Therefore, introducing mobile collectors to collect data instead of nmlti-hop data relay is essential. However, for rmny proposed data gathering ap-proaches, long data deNNy is the train problenm. Hence, the problem of how to decrease the energy consumption and the data deNNy needs to be solved. In this paper, a low deNNy data collection mechanism using multiple mobile collectors is pro- posed. First, a self-organization clustering algorithm is designed. Second, sensor nodes are organized into three-level clusters. Then a collection strategy based on the hierarchical structure is proposed, which includes two rules to dispatch mobile collec- tors rationally. Simulation results show that the proposed mechanism is superior to other existing approaches in terms of the reduction in energy ex-penditure and the decrease in data deNNy.
文摘Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.
文摘The principle of a new optical fiber temperature transducer is presented,and ingenious design scheme of this transducer is given.Because taking the special modulation and ratio measurement,this new transducer has provided with high characteristics:experimental transmitting distance is 500m;measurement error,in the measured temperature range of 0-250℃,,is less than ±0.5℃;power consumption of the probe is less than 300μW.Finally,some points of the experiment are given.
基金Supported by the National Natural Science Foundation of China (No. 60475012)
文摘In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data collection and transmission, and function nodes are responsible for key management. There are more than one function nodes in the cluster consulting the key generation and other security decision-making. The function nodes are the second-class security center because of the characteristics of the distributed WSNs. Secondly, It is also described that the formation of function nodes and cluster heads under the control of the former, and five kinds of keys, i.e., individual key, pairwise keys, cluster key, management key, and group key. Finally, performance analysis and experiments show that, the protocol is superior in communication and energy consumption. The delay of establishing the cluster key meets the requirements, and a multiple pairwise key which adopts the coordinated security authentication scheme is provided.