The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error ...The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.展开更多
Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on diffe...Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.展开更多
文摘The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176103,91323304)the National High-Tech Research and Development Program of China("863"Project)(Grant No.2013AA041102)the Beijing Natural Science Foundation of China(Grant No.4141002)
文摘Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.