A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, a...A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.展开更多
The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time parab...The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.展开更多
A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to fur...A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to further diagnose and locate the potential problem of the cable system. This paper presents the experience of the present authors carrying out the cable test. Following a brief introduction to the experiment equipments and physical connections, the paper analyses the data collected from the testing, including PD pulse shape analysis, frequency spectrum analysis and phase resolved PD pattern analysis. Associated with PD propagation direction identification, PD source diagnosis and localisation was made. Four different types of sensors, which were adapted during the testing, are shown to have different frequency bandwidths and performed differently. Aider comparing the parameters of the sensor and the PD signals detected by individual sensor, optimal PD monitoring bandwidth for cable system is suggested.展开更多
In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation struct...In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.展开更多
文摘A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036,11303059)
文摘The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.
文摘A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to further diagnose and locate the potential problem of the cable system. This paper presents the experience of the present authors carrying out the cable test. Following a brief introduction to the experiment equipments and physical connections, the paper analyses the data collected from the testing, including PD pulse shape analysis, frequency spectrum analysis and phase resolved PD pattern analysis. Associated with PD propagation direction identification, PD source diagnosis and localisation was made. Four different types of sensors, which were adapted during the testing, are shown to have different frequency bandwidths and performed differently. Aider comparing the parameters of the sensor and the PD signals detected by individual sensor, optimal PD monitoring bandwidth for cable system is suggested.
基金The research work reported in this paper was jointly supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China and FASTEN Group Company. Thanks to the support of Wuhan City Building Research Funds (201310), the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090), and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.