The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to...The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.展开更多
The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-ar...Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-area, lowcost manufacturing goals. As an indispensable complement to traditional silicon-based transistors, organic thin-film field-effect transistors have made great progress in materials,performance, bending capacity, and integrated circuits in recent few years. Flexible transistors and circuitry have extremely promising application prospects and possess irreplaceable status in foldable displays, artificial skins and bendable smart cards. In this review, we will discuss the evolution of flexible organic transistors and integrated circuits in terms of material, fabrication as well as application.展开更多
文摘The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12030400)the National Basic Research Program of China(2013CB933504)+2 种基金the National Natural Science Foundation of China(61221004)the Beijing Training Project for the Leading Talents in S&T(Z151100000315008)the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology,Institute of Microelectronics of Chinese Academy of Science,and Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)
文摘Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-area, lowcost manufacturing goals. As an indispensable complement to traditional silicon-based transistors, organic thin-film field-effect transistors have made great progress in materials,performance, bending capacity, and integrated circuits in recent few years. Flexible transistors and circuitry have extremely promising application prospects and possess irreplaceable status in foldable displays, artificial skins and bendable smart cards. In this review, we will discuss the evolution of flexible organic transistors and integrated circuits in terms of material, fabrication as well as application.