Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this...Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.展开更多
A staggered-grid finite difference method is used to model seismic wave records in a coal bearing, porous medium. The variables analyzed include the order of the difference calculations, the use of a perfect match lay...A staggered-grid finite difference method is used to model seismic wave records in a coal bearing, porous medium. The variables analyzed include the order of the difference calculations, the use of a perfect match layer to provide absorbing boundary conditions, the source location, the stability conditions, and dispersion in the medium. The results show that the location of the first derivative of the dynamic variable with respect to space is coincident with the location of the first derivative of the kinematic varable with respect to time. Outgoing waves are effectively absorbed and reflection at the boundary is very weak when more than 20 perfect match layer cells are used. Blot theory considers the liquid phase to be homogeneous so the ratio of liquid to solid exposure of the seismic source depends upon the medium porosity. Numerical dispersion and generation of false frequencies is reduced by increasing the accuracy of the difference calculations and by reducing the grid size and time step. Temporal second order accuracy, a tenth order spatial accuracy, and a wavelength over more than ten grid points gave acceptable numerical results. Larger grid step sizes in the lateral direction and smaller grid sizes in the vertical direction allow control of dispersion when the medium is a low speed body. This provides a useful way to simulate seismic waves in a porous coal bearing medium.展开更多
基金Project(2009ZX01031-001-007-2)supported by the National Science and Technology Major Project,China
文摘Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.
基金supported by the National Basic Research Program of China (Nos.2009CB219603 and 2006CB202209)the National Natural Science Foundation of Special Equipment (No. 50727401)the National Science & Technology Pillar Program in the Eleventh Five-Year PlanPeriod (No. 2007BAK28B03)
文摘A staggered-grid finite difference method is used to model seismic wave records in a coal bearing, porous medium. The variables analyzed include the order of the difference calculations, the use of a perfect match layer to provide absorbing boundary conditions, the source location, the stability conditions, and dispersion in the medium. The results show that the location of the first derivative of the dynamic variable with respect to space is coincident with the location of the first derivative of the kinematic varable with respect to time. Outgoing waves are effectively absorbed and reflection at the boundary is very weak when more than 20 perfect match layer cells are used. Blot theory considers the liquid phase to be homogeneous so the ratio of liquid to solid exposure of the seismic source depends upon the medium porosity. Numerical dispersion and generation of false frequencies is reduced by increasing the accuracy of the difference calculations and by reducing the grid size and time step. Temporal second order accuracy, a tenth order spatial accuracy, and a wavelength over more than ten grid points gave acceptable numerical results. Larger grid step sizes in the lateral direction and smaller grid sizes in the vertical direction allow control of dispersion when the medium is a low speed body. This provides a useful way to simulate seismic waves in a porous coal bearing medium.