For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of micros...For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.展开更多
A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are ...A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are needed to eliminate the switching activities of internal nodes.Based on the proposed structure and design technique,two pulsed flip-flops were implemented and simulated.The proposed pulsed flip-flops have simple circuit structures.HSPICE simulation shows that the proposed pulsed D flip-flop outperforms the conventional pulsed D flip-flop by 17.2% in delay and 30.1% in power-delay-product(PDP) and the proposed pulsed JK flip-flop has low power and small PDP compared with pulsed D pulsed flip-flops,confirming that the proposed structure and design technique are simple and practical.展开更多
The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The ca...The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the comer problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.展开更多
The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave e...The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.展开更多
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the s...The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scat- tered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluat- ed. The influences of surface stress are discussed based on the numerical results.展开更多
All behaviors of an organism are rooted in sensory processing of signals from its environment, and nat ural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory dr...All behaviors of an organism are rooted in sensory processing of signals from its environment, and nat ural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environ ments, has been a useful hypothesis for describing sensory adaptations, but its current scope has pri marily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolu tion and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfac tion and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here, we examine why chemosensory systems have been overlooked and discuss the potential of chemo sensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions for developing a framework to better incorporate studies of chemosensory adaptation that have the po tential to shape a more complete, coherent, and holistic interpretation of the sensory drive.展开更多
A hybrid numerical method is proposed for analysis of transient responses in a multilayered piezoelectric cylindrical shell.In the present method,the associated equations of the displacement field and the electro-pote...A hybrid numerical method is proposed for analysis of transient responses in a multilayered piezoelectric cylindrical shell.In the present method,the associated equations of the displacement field and the electro-potential field are developed using an analytical-numerical method.The piezoelectric cylindrical shell is discretized into layered annular elements along the wall thickness direction.The governing equations are determined by Hamilton's Principle considering the coupling between the elastic and electric field in each element.The modal analysis and Fourier transformation with respect to the spatial cylindrical polar coordinates in the direction of wave propagation are introduced to formulate the displacement field and electro-potential field in the wave-number domain.The results of transient responses at any location can be obtained by performing an inverse Fourier transformation.The transient responses of an actual piezoelectric cylindrical shell excited by a coupled electro-mechanical circular line load are investigated as a numerical example.The computational results demonstrate the efficiency of the present method.展开更多
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the...In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.展开更多
基金support jointly by projects of the National Natural Science Fund Project (40674017 and 50774012)the National Key Basic Research and Development Plan 973 (2010CB226803)
文摘For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.
基金Project(60503027) supported by the National Natural Science Foundation of China
文摘A kind of structure and a design method using transmission voltage-switch theory for pulse-triggered flip-flops were proposed,which are suitable for all kinds of pulse-triggered flip-flops and no extra techniques are needed to eliminate the switching activities of internal nodes.Based on the proposed structure and design technique,two pulsed flip-flops were implemented and simulated.The proposed pulsed flip-flops have simple circuit structures.HSPICE simulation shows that the proposed pulsed D flip-flop outperforms the conventional pulsed D flip-flop by 17.2% in delay and 30.1% in power-delay-product(PDP) and the proposed pulsed JK flip-flop has low power and small PDP compared with pulsed D pulsed flip-flops,confirming that the proposed structure and design technique are simple and practical.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No.51009038/E091002).
文摘The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the comer problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.
基金Project (Nos 10632020 and 90715006) supported by the National Natural Science Foundation of China
文摘The band structures of flexural waves in a phononic crystal thin plate with straight, bending or branching linear defects are theoretically investigated using the supercell technique based on the improved plane wave expansion method. We show the existence of an absolute band gap of the perfect phononic crystal and linear defect modes inside the gap caused by localization of flexural waves at or near the defects. The displacement distributions show that flexural waves can transmit well along the straight linear defect created by removing one row of cylinders from the perfect phononic crystals for almost all the frequencies falling in the band gap, which indicates that this structure can act as a high efficiency waveguide. However, for bending or branching linear defects, there exist both guided and localized modes, and therefore the phononic crystals could be served as waveguides or filters.
基金the National Natural Science Foundation of China (Grant Nos. 10972029 and 40906044)the Youth Scientific Research Foundation PLA University of Science and Technology (Grant No. 20110510)
文摘The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scat- tered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluat- ed. The influences of surface stress are discussed based on the numerical results.
文摘All behaviors of an organism are rooted in sensory processing of signals from its environment, and nat ural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environ ments, has been a useful hypothesis for describing sensory adaptations, but its current scope has pri marily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolu tion and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfac tion and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here, we examine why chemosensory systems have been overlooked and discuss the potential of chemo sensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions for developing a framework to better incorporate studies of chemosensory adaptation that have the po tential to shape a more complete, coherent, and holistic interpretation of the sensory drive.
基金supported by the China National Funds for Distinguished Young Scientists (Grant Nos.10725208)a research grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No.CityU 113809)the National Natural Science Foundation of China (Grant Nos.10802028)
文摘A hybrid numerical method is proposed for analysis of transient responses in a multilayered piezoelectric cylindrical shell.In the present method,the associated equations of the displacement field and the electro-potential field are developed using an analytical-numerical method.The piezoelectric cylindrical shell is discretized into layered annular elements along the wall thickness direction.The governing equations are determined by Hamilton's Principle considering the coupling between the elastic and electric field in each element.The modal analysis and Fourier transformation with respect to the spatial cylindrical polar coordinates in the direction of wave propagation are introduced to formulate the displacement field and electro-potential field in the wave-number domain.The results of transient responses at any location can be obtained by performing an inverse Fourier transformation.The transient responses of an actual piezoelectric cylindrical shell excited by a coupled electro-mechanical circular line load are investigated as a numerical example.The computational results demonstrate the efficiency of the present method.
基金supported by the National Natural Science Foundation of China (Grant No. 10972029)
文摘In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.