为有效降低非圆信号DOA(direction of arrival)估计算法的计算量,本文提出一种非圆信号DOA估计快速算法,借助实值扩展传播算子和多项式求根方法来降低计算量。首先利用信号非圆特性构造出实值的扩展阵列输出矩阵及扩展协方差矩阵,然后...为有效降低非圆信号DOA(direction of arrival)估计算法的计算量,本文提出一种非圆信号DOA估计快速算法,借助实值扩展传播算子和多项式求根方法来降低计算量。首先利用信号非圆特性构造出实值的扩展阵列输出矩阵及扩展协方差矩阵,然后使用扩展传播算子方法代替扩展协方差矩阵的特征分解得到噪声子空间,再利用均匀线阵的多项式求根方法获得目标的DOA估计值。对算法的性能仿真和计算复杂度分析表明,新算法的均方根误差性能与Euler-root-MUSIC、NC-root-MUSIC等快速算法相近,但其计算复杂度小于上述非圆信号DOA估计快速算法。优良的性能和较低的计算量使新算法具有良好的实用价值。展开更多
The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specim...The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.展开更多
Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechan...Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.展开更多
This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequenc...This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.展开更多
文摘为有效降低非圆信号DOA(direction of arrival)估计算法的计算量,本文提出一种非圆信号DOA估计快速算法,借助实值扩展传播算子和多项式求根方法来降低计算量。首先利用信号非圆特性构造出实值的扩展阵列输出矩阵及扩展协方差矩阵,然后使用扩展传播算子方法代替扩展协方差矩阵的特征分解得到噪声子空间,再利用均匀线阵的多项式求根方法获得目标的DOA估计值。对算法的性能仿真和计算复杂度分析表明,新算法的均方根误差性能与Euler-root-MUSIC、NC-root-MUSIC等快速算法相近,但其计算复杂度小于上述非圆信号DOA估计快速算法。优良的性能和较低的计算量使新算法具有良好的实用价值。
文摘The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported in part by Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No. IRT1078 Key Program of NSFC-Guangdong Union Foundation under Grant No. U1135002+3 种基金 National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No. 2011ZX03005- 002 National Natural Science Foundation of China under Grant No.61173135 Natural Science Foundation of Shaanxi Province under Grant No.2014JQ8297 Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos. JY 10000903001, K5051303007, K5051203012.
文摘Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.
文摘This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.