考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算...考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算法。同时采用Euler变换把非圆PM算法中的复数运算转换为实数运算,降低计算复杂度,角度估计性能逼近非圆PM算法。该算法可以实现二维角度的自动配对,与传统PM算法相比,可同时估计出更多的信源。该算法的优越性均可在文中得到验证。展开更多
针对基于传播算子方法(Propagator Method,PM)的水听器阵波达方向(Direction of Arrival,DOA)估计在低信噪比或者小快拍数时性能变差的问题,文章提出一种改进的基于PM算法的水听器阵方位估计方法。该方法利用信号子空间的旋转不变性特...针对基于传播算子方法(Propagator Method,PM)的水听器阵波达方向(Direction of Arrival,DOA)估计在低信噪比或者小快拍数时性能变差的问题,文章提出一种改进的基于PM算法的水听器阵方位估计方法。该方法利用信号子空间的旋转不变性特征对协方差矩阵进行扩展和重构,通过分块协方差矩阵的子矩阵得到传播算子矩阵。通过传播算子矩阵构造扩展噪声子空间,然后利用信号子空间与噪声子空间的正交性估计空间谱。仿真实验和湖上实验的结果表明:相较于传统PM方位估计算法,文中算法在低信噪比或者小快拍情况下具有较好的方位估计性能,在信噪比为0 dB时,文中方法比传统PM算法均方根误差减少0.6°;在快拍数为150时,比传统PM算法的均方根误差减少0.1°。展开更多
文摘考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算法。同时采用Euler变换把非圆PM算法中的复数运算转换为实数运算,降低计算复杂度,角度估计性能逼近非圆PM算法。该算法可以实现二维角度的自动配对,与传统PM算法相比,可同时估计出更多的信源。该算法的优越性均可在文中得到验证。
文摘针对基于传播算子方法(Propagator Method,PM)的水听器阵波达方向(Direction of Arrival,DOA)估计在低信噪比或者小快拍数时性能变差的问题,文章提出一种改进的基于PM算法的水听器阵方位估计方法。该方法利用信号子空间的旋转不变性特征对协方差矩阵进行扩展和重构,通过分块协方差矩阵的子矩阵得到传播算子矩阵。通过传播算子矩阵构造扩展噪声子空间,然后利用信号子空间与噪声子空间的正交性估计空间谱。仿真实验和湖上实验的结果表明:相较于传统PM方位估计算法,文中算法在低信噪比或者小快拍情况下具有较好的方位估计性能,在信噪比为0 dB时,文中方法比传统PM算法均方根误差减少0.6°;在快拍数为150时,比传统PM算法的均方根误差减少0.1°。