Gas-bearing volcanic reservoirs have been found in the deep Songliao Basin, China. Choosing proper interpretation parameters for log evaluation is difficult due to complicated mineral compositions and variable mineral...Gas-bearing volcanic reservoirs have been found in the deep Songliao Basin, China. Choosing proper interpretation parameters for log evaluation is difficult due to complicated mineral compositions and variable mineral contents. Based on the QAPF classification scheme given by IUGS, we propose a method to determine the mineral contents of volcanic rocks using log data and a genetic algorithm. According to the QAPF scheme, minerals in volcanic rocks are divided into five groups: Q(quartz), A (Alkaline feldspar), P (plagioclase), M (mafic) and F (feldspathoid). We propose a model called QAPM including porosity for the volumetric analysis of reservoirs. The log response equations for density, apparent neutron porosity, transit time, gamma ray and volume photoelectrical cross section index were first established with the mineral parameters obtained from the Schlumberger handbook of log mineral parameters. Then the volumes of the four minerals in the matrix were calculated using the genetic algorithm (GA). The calculated porosity, based on the interpretation parameters, can be compared with core porosity, and the rock names given in the paper based on QAPF classification according to the four mineral contents are compatible with those from the chemical analysis of the core samples.展开更多
Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for dis...Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.展开更多
基金National Natural Science Foundation of China (No. 49894194-4)
文摘Gas-bearing volcanic reservoirs have been found in the deep Songliao Basin, China. Choosing proper interpretation parameters for log evaluation is difficult due to complicated mineral compositions and variable mineral contents. Based on the QAPF classification scheme given by IUGS, we propose a method to determine the mineral contents of volcanic rocks using log data and a genetic algorithm. According to the QAPF scheme, minerals in volcanic rocks are divided into five groups: Q(quartz), A (Alkaline feldspar), P (plagioclase), M (mafic) and F (feldspathoid). We propose a model called QAPM including porosity for the volumetric analysis of reservoirs. The log response equations for density, apparent neutron porosity, transit time, gamma ray and volume photoelectrical cross section index were first established with the mineral parameters obtained from the Schlumberger handbook of log mineral parameters. Then the volumes of the four minerals in the matrix were calculated using the genetic algorithm (GA). The calculated porosity, based on the interpretation parameters, can be compared with core porosity, and the rock names given in the paper based on QAPF classification according to the four mineral contents are compatible with those from the chemical analysis of the core samples.
文摘Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.