The physical models of the outer and inner half coil jackets were simplified to two types of coiled ducts.The mathematic models of incompressible fluid at the condition of laminar flow and heat transfer in the two typ...The physical models of the outer and inner half coil jackets were simplified to two types of coiled ducts.The mathematic models of incompressible fluid at the condition of laminar flow and heat transfer in the two types of jackets for cooling process reactor were set up and solved by the semi-implicit method for pressure linked equa-tions consistent (SIMPLEC) algorithm based on a control volume method.The flow and temperature fields were given and the effects of Dean and Prandtl numbers on flow and heat transfer were studied.The results show that flow in the inner half coil jacket is found to exhibit transition of secondary flow pattern from two vortices to four vortices when the Dean number increases,but that in the outer half coil jacket is not found.The critical Dean num-ber is about 96.The inner half coil jacket has stronger heat transfer ability than the outer half coil jacket and this superiority is more evident with larger Prandtl number.However,as the Dean number is greater than 105,the flow resistance enhances more severely in the inner jacket than the outer jacket.For both jackets,the centers of the heated wall are the poorest for heat transfer.展开更多
A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant tem...A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature. The two end walls are assumed to be insulated. A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus, and the research emphasis is placed on the influences of inclination angle or and modified Rayleigh number Ra on the natural convection heat transfer in the annulus. Computations were carried out in the ranges of 0°α 90*, 2.5×105 Ra* and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K= 3.33. The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant. Detailed results of heat transfer rate, temperature, and velocity fields are presented for the case of or α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°.展开更多
基金Supported by the National Key Technologies Research and Development Program during the 10th Five-year Plan Period(2004BA319B1)the Educational Commission of Liaoning Province of China(2008S117)
文摘The physical models of the outer and inner half coil jackets were simplified to two types of coiled ducts.The mathematic models of incompressible fluid at the condition of laminar flow and heat transfer in the two types of jackets for cooling process reactor were set up and solved by the semi-implicit method for pressure linked equa-tions consistent (SIMPLEC) algorithm based on a control volume method.The flow and temperature fields were given and the effects of Dean and Prandtl numbers on flow and heat transfer were studied.The results show that flow in the inner half coil jacket is found to exhibit transition of secondary flow pattern from two vortices to four vortices when the Dean number increases,but that in the outer half coil jacket is not found.The critical Dean num-ber is about 96.The inner half coil jacket has stronger heat transfer ability than the outer half coil jacket and this superiority is more evident with larger Prandtl number.However,as the Dean number is greater than 105,the flow resistance enhances more severely in the inner jacket than the outer jacket.For both jackets,the centers of the heated wall are the poorest for heat transfer.
文摘A numerical study of natural convection heat transfer in an inclined cylindrical annulus has been conducted. The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature. The two end walls are assumed to be insulated. A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus, and the research emphasis is placed on the influences of inclination angle or and modified Rayleigh number Ra on the natural convection heat transfer in the annulus. Computations were carried out in the ranges of 0°α 90*, 2.5×105 Ra* and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K= 3.33. The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant. Detailed results of heat transfer rate, temperature, and velocity fields are presented for the case of or α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°.