Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed num...Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.展开更多
The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-c...The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing.展开更多
With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the pla...With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.展开更多
A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missi...A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.展开更多
A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature...A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.展开更多
This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution ...This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution of boundary and initial value problems. A flexible input of the governing DE's and of material properties functions allows the simulation of non-linear variable behavior quickly and inexpensively. A modeling of temperature distribution in one-dimensional problem, a cross section of an electric wire was simulated. Comparison of those results obtained by FlexPDE with analytical and numerical solutions are done. The results compared well with those obtained from the analytical and numerical methods. The adaptability of the FlexPDE software for solving a variety of problem types was clearly demonstrated.展开更多
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech...Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.展开更多
Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating...Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters, thus, it is possible to reduce computation time in comparison with numerical methods. In this paper, an alternative procedure is presented. Here is used a hybrid solution based on Green's function and real characteristics (discrete data) of the boundary conditions.展开更多
Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random phys...Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random physical parameters,initial and boundary conditions is discussed.Begin with the analysis of steady-state heat conduction problems,difference discrete equations with random parameters are established,and then the computing formulas for the mean value and variance of temperature field are derived by the second-order stochastic parameter perturbation method.Subsequently,the proposed random model and method are extended to the field of transient heat conduction and the new analysis theory of stability applicable to stochastic difference schemes is developed.The layer-by-layer recursive equations for the first two probabilistic moments of the transient temperature field at different time points are quickly obtained and easily solved by programming.Finally,by comparing the results with traditional Monte Carlo simulation,two numerical examples are given to demonstrate the feasibility and effectiveness of the presented method for solving both steady-state and transient heat conduction problems.展开更多
The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the imp...The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.展开更多
Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module o...Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).展开更多
Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is...Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is obtained in this paper.In other cases the temperature would vary monotonously along geometric coordinates as time goes by.There have been very few open reports of explicit unsteady multidimensional exact analytical solutions published in literature.Besides its irreplaceable theoretical value,the analytical solution can also serve as standard solution to check numerical calculation,and therefore promote the development of numerical method of computational heat transfer.In addition,some new special methods have been given originally and deserved further attention.展开更多
文摘Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.
文摘The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA053001)
文摘With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.
基金Project 2006G1662-00 supported by the Key Science and Technology Project of Heilongjiang Province
文摘A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.
文摘A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.
文摘This paper illustrates the use of a general purpose differential equation (DE) solver called FlexPDE for the solution heat transfer problems in electric wire. FlexPDE uses the finite element method for the solution of boundary and initial value problems. A flexible input of the governing DE's and of material properties functions allows the simulation of non-linear variable behavior quickly and inexpensively. A modeling of temperature distribution in one-dimensional problem, a cross section of an electric wire was simulated. Comparison of those results obtained by FlexPDE with analytical and numerical solutions are done. The results compared well with those obtained from the analytical and numerical methods. The adaptability of the FlexPDE software for solving a variety of problem types was clearly demonstrated.
基金Sponsored by the National Natural Science Foundation of China (Grant No.5047028 and 50476017)
文摘Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.
文摘Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters, thus, it is possible to reduce computation time in comparison with numerical methods. In this paper, an alternative procedure is presented. Here is used a hybrid solution based on Green's function and real characteristics (discrete data) of the boundary conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.90816024,10872017 and 10876100)the Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)the 111 Project(Grant No.B07009)
文摘Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random physical parameters,initial and boundary conditions is discussed.Begin with the analysis of steady-state heat conduction problems,difference discrete equations with random parameters are established,and then the computing formulas for the mean value and variance of temperature field are derived by the second-order stochastic parameter perturbation method.Subsequently,the proposed random model and method are extended to the field of transient heat conduction and the new analysis theory of stability applicable to stochastic difference schemes is developed.The layer-by-layer recursive equations for the first two probabilistic moments of the transient temperature field at different time points are quickly obtained and easily solved by programming.Finally,by comparing the results with traditional Monte Carlo simulation,two numerical examples are given to demonstrate the feasibility and effectiveness of the presented method for solving both steady-state and transient heat conduction problems.
基金supported by the AG Turbo with funds of the Federal Ministry of Eco- nomics and Technology BMWi (FKZ 0327715G)
文摘The present investigation analyzes the effects of major geometrical modifications to the interior of a convectioncooled gas turbine rotor blade. The main focus lies on the flow of the leading edge channels and the impact on theheat transfer. An experimental approach is performed with flow visualization via paint injection into water. Alsonumerical calculations are carried out in two sets, on the one hand water calculations accompanying the experimentsand on the other hand conjugate heat transfer calculations under realistic engine conditions. The latter calculationsare still ongoing delivering preliminary results.Five geometry configurations are investigated, three of them with differing turbulator arrangements in the leadingedge channels. The operating point of the base configuration is set to Re = 50,000 at the inlet while for the modifiedgeometries the pressure ratio is held constant compared to the base.Among several investigated configurations one could be identified that leads to a heat transfer enhancement inone leading edge channel 7 % larger compared to the base.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).
基金supported by the National Natural Science Foundation of China(Grant No.50876106)
文摘Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is obtained in this paper.In other cases the temperature would vary monotonously along geometric coordinates as time goes by.There have been very few open reports of explicit unsteady multidimensional exact analytical solutions published in literature.Besides its irreplaceable theoretical value,the analytical solution can also serve as standard solution to check numerical calculation,and therefore promote the development of numerical method of computational heat transfer.In addition,some new special methods have been given originally and deserved further attention.