期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
板翅式单元液氮中微膜热虹吸浅池沸腾的实验研究 被引量:8
1
作者 陈流芳 吴裕远 +1 位作者 张玉文 彭守运 《西安交通大学学报》 EI CAS CSCD 北大核心 1995年第5期34-38,69,共6页
为模拟空气分离装置中冷凝蒸发器的实际运行状况,采用1m长的板翅式单元作冷凝蒸发器的微膜热虹吸沸腾通道,使之部分地沉浸在液氮池中进行浅池沸腾试验,实验结果表明,当板翅式单元露出液面部分从0增加到40cm时,在整个试样始... 为模拟空气分离装置中冷凝蒸发器的实际运行状况,采用1m长的板翅式单元作冷凝蒸发器的微膜热虹吸沸腾通道,使之部分地沉浸在液氮池中进行浅池沸腾试验,实验结果表明,当板翅式单元露出液面部分从0增加到40cm时,在整个试样始终保持相同热流密度的条件下,其沸腾传热温差仅增加0.19K;只要热流密度维持在某一最小起始值之上,即使沉浸深度减少40%,冷凝蒸发器仍将处于高效和安全运行状态。 展开更多
关键词 两相流 浅池沸腾 微膜热虹吸 传热机
下载PDF
Water and heat transport in hilly red soil of southern China:I. Experiment and analysis 被引量:4
2
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期331-337,共7页
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture... Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evapo- ration. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water. 展开更多
关键词 Red soil Coupled transfer of water and heat EVAPORATION Initial soil moisture
下载PDF
An Improved Design of Spiral Groove Mechanical Seal 被引量:8
3
作者 周剑锋 顾伯勤 陈晔 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期499-506,共8页
The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to... The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability. 展开更多
关键词 spiral groove mechanical seal heat transfer optimum design bearing force leakage rate
下载PDF
Boiling Heat Transfer in an Acoustic Cavitation Field 被引量:1
4
作者 周定伟 刘登瀛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期625-629,共5页
An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results... An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results show that acoustic cavitation enhancedremarkably the boiling heat transfer and decreased the incipientboiling superheat and that cavitation bubbles effect on boiling heattransfer reduced with cavitation distance. For boiling curves in aform of h-q', elevated cavitation distance shift nucleate boilingcurves to the right of the cor- responding ordinary pool boilingcurve. The associated mechanism of heat transfer enhancement isanalyzed with the consideration of cavitation bubble influence onvapor embryo. 展开更多
关键词 acoustic cavitation boiling heat transfer HYSTERESIS
下载PDF
The Mechanism of Interfacial Mass Transfer in Gas Absorption Process 被引量:2
5
作者 马友光 冯惠生 +1 位作者 徐世昌 余国琮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期227-230,共4页
Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, ... Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, the hydrodynamics and mass transfer characteristics of CO2 absorption are measured. It is shown that the calculated results are in good agreement with the experimental data. 展开更多
关键词 laser holographic interference mass transfer gas-liquid interface ABSORPTION
下载PDF
AIR VELOCITY SENSOR
6
作者 潘本琛 《Journal of China University of Mining and Technology》 1992年第1期134-138,共5页
During the last twenty years there has been rapid progress in the use of automation in a wide range of industries,as well as in military, scientific application. However, the progress in the application of automatic c... During the last twenty years there has been rapid progress in the use of automation in a wide range of industries,as well as in military, scientific application. However, the progress in the application of automatic control is often hindered by the lack of accurate, reliable measuring apparatus. An economic thermal couple air flow sensor with better linearity (accuracy is ±5% of full scale) has been successfully made at Trolex Ltd. Many other existing sensors fail in the application of industries because of non-linearity. 展开更多
关键词 SENSOR air velocity heat transfer CONVERSION
下载PDF
OpenMP-Based PCG Solver for Three-Dimensional Heat Equation
7
作者 Dandan Li Qun Wang 《Computer Technology and Application》 2011年第12期963-968,共6页
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational ... As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance. 展开更多
关键词 Three-dimensional heat equation preconditioned conjugate gradient compiler directives OpenMP.
下载PDF
Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder soot emission formation in diesel engine
8
作者 吕继组 白敏丽 +1 位作者 李晓杰 周龙 《Journal of Central South University》 SCIE EI CAS 2011年第1期271-278,共8页
Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a ... Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, in which the coupled three-dimensional simulation of in-cylindcr working process and the combustion chamber components was adopted. The simulation was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The heat transfer space non-uniformity of combustion chamber components has little effect on soot formation, and far less effect on soot formation than on NOx. Under two situations of different wall temperature distributions, the soot in cylinder is different by 1.3% when exhaust valves are open. 展开更多
关键词 heat transfer space non-uniformity soot emission IN-CYLINDER DIESEL
下载PDF
Performance of an R410a Filled Loop Heat Pipe Heat Exchanger
9
作者 K.S. Ong 《Journal of Energy and Power Engineering》 2011年第1期1-9,共9页
A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loo... A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment. 展开更多
关键词 Loop heat pipe heat exchanger R410A multiple rows effectiveness-NTU model overall effectiveness.
下载PDF
Experimental Study on the Start Up Performance of Flat Plate Pulsating Heat Pipe 被引量:16
10
作者 Chaofa Hu Li Jia 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第2期150-154,共5页
An experimental system of flat plate pulsating heat pipe was established and experimental research was carried out in this system to know the mechanism of heat transfer, start-up and operating characteristics. The fac... An experimental system of flat plate pulsating heat pipe was established and experimental research was carried out in this system to know the mechanism of heat transfer, start-up and operating characteristics. The factors, such as filling rate, heating power, heating method etc, which have great influence on the thermal performance of the plate pulsating heat pipe were discussed. The results indicate that heating power and filling rate are the important factors for the start-up of the plate pulsating heat pipe. The different start-up power is needed with different filling rate, and the start-up of the heat pipe in case of bottom heated is much easier than that of top heated. Increasing the heating power and enlarging the heating area can make the start-up easier. Heating power can also affect the start-up time of heat pipe under the condition of bottom heated, while it does not have some influence to the heat pipe of top heated. The thermal resistance of plate pulsating heat pipe is related with the heating power, and the higher the heating power is, the smaller the thermal resistance is. But the best filling rate which the heat pipe needs is different with different heating methods, and the performance of the heat pipe in the case of bottom heated is better than the others. 展开更多
关键词 Plate pulsating heat pipe start-up power bottom heated top heated influence factors
原文传递
Shape Optimization of Inclined Ribs as Heat Transfer Augmentation Device 被引量:1
11
作者 Kwang-YongKim Hong-MinKim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第4期364-370,共7页
This work presents numerical optimization techniques for the design of a rectangular channel with inclined ribs to enhance turbulent heat transfer. The response surface method with Reynolds-averaged Navier-Stokes anal... This work presents numerical optimization techniques for the design of a rectangular channel with inclined ribs to enhance turbulent heat transfer. The response surface method with Reynolds-averaged Navier-Stokes analysis is used for optimization. Shear stress transport turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show a reasonable agreement with the experimental data. Width-to-fib height ratio and attack angle of the rib arc chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with the weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in a range of the weighting factor. 展开更多
关键词 numerical optimization RANS analysis square ribs heat transfer response surface method
原文传递
Experimental study on heat transfer characteristics of synthetic jet driven by piston actuator 被引量:6
12
作者 GAO Shan ZHANG JingZhou TAN XiaoMing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第6期1732-1738,共7页
Experimental investigation was conducted to investigate the impingement heat transfer performance of a synthetic jet driven by piston actuator on a constant heat flux surface. Effects of jet formation frequency, nozzl... Experimental investigation was conducted to investigate the impingement heat transfer performance of a synthetic jet driven by piston actuator on a constant heat flux surface. Effects of jet formation frequency, nozzle-to-surface spacing ratio and con- jugation of cross flow were considered. The synthetic jet is of stronger penetration and heat transfer capacity when the piston reciprocates at relatively high frequency. Similar to the continuous jet impingement, nozzle-to-surface spacing ratio plays an important role in the heat transfer enhancement of synthetic jet. The optimum nozzle-to-surface spacing ratio corresponding to maximum heat transfer enhancement is considerably high in the synthetic jet, as compared to that in a continuous jet, which indicates that the synthetic jet introduces a stronger entrainment and more vigorous penetration in the surrounding fluid. The convective heat transfer capacity is enhanced significantly under the conjugate action of a synthetic jet and cross flow in com- narison with their individual action. 展开更多
关键词 synthetic jet impinging cooling cross flow heat transfer
原文传递
Influence of Internal Channel Geometry of Gas Turbine Blade on Flow Structure and Heat Transfer 被引量:5
13
作者 Ryszard Szwaba Piotr Kaczynski +1 位作者 Janusz Telega Piotr Doerffer 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第6期514-522,共9页
This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The in... This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations foi: the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a comer fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features. 展开更多
关键词 COOLING internal blade channels aerodynamics with heat transfer
原文传递
Local Entropy Production in Turbulent Shear Flows:A Tool for Evaluating Heat Transfer Performance 被引量:7
14
作者 H. HERWIG F. KOCK 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第2期159-167,共9页
Performance evaluation of heat transfer devices can be based on the overall entropy production in these devices. In our study we therefore provide equations for the systematic and detailed determination of local entro... Performance evaluation of heat transfer devices can be based on the overall entropy production in these devices. In our study we therefore provide equations for the systematic and detailed determination of local entropy production due to dissipation of mechanical energy and due to heat conduction, both in turbulent flows. After turbulence modeling has been incorporated for the fluctuating parts the overall entropy production can be determined by integration with respect to the whole flow domain. Since, however, entropy production rates show very steep gradients close to the wall, numerical solutions are far more effective with wall functions for the entropy production terms. These wall functions are mandatory when high Reynolds number turbulence models are used. For turbulent flow in a pipe with an inserted twisted tape as heat transfer promoter it is shown that based on the overall entropy production rate a clear statement from a thermodynamic point of view is possible. For a certain range of twist strength there is a decrease in overall entropy production compared to the case without insert. Also, the optimum twist strength can be determined. This information is unavailable when only pressure drop and heat transfer data are given. 展开更多
关键词 entropy production turbulent heat transfer wall functions
原文传递
Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer 被引量:1
15
作者 QuWei MaTongze 《Journal of Thermal Science》 SCIE EI CAS CSCD 2001年第3期240-246,共7页
The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence... The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate. 展开更多
关键词 periodic microrelief roughness angle roughness height.
原文传递
Numerical analysis on the heat transfer of three types of nozzles for the hypersonic long-run wind tunnel 被引量:1
16
作者 XING YunFei ZHONG FengQuan +1 位作者 LI DongXia ZHANG XinYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第3期470-475,共6页
The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunne... The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunnel facility demands effective cooling protection.In this work,the two-dimensional,three-dimensional and axisymmetric Mach 6.5 nozzles at an inlet total temperature of 1840 K and a total pressure of 6.4 MPa were studied with main focuses on the properties of aerodynamic heating of nozzles.The present work aims to provide insights into the design of an effective cooling system for the nozzle and other components of the hypersonic long-run wind tunnel. 展开更多
关键词 hypersonic scramjet test tunnel NOZZLE aerodynamic heating convective heat transfer
原文传递
High mixing effectiveness lobed nozzles and mixing mechanisms 被引量:3
17
作者 SHENG ZhiQiang CHEN ShiChun +1 位作者 WU Zhe HUANG PeiLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1218-1233,共16页
For a circular lobed nozzle with the exit plane displaced from the center body,adding a central plug at exit or replacing the nozzle with an alternating-lobe nozzle can improve the mixing effectiveness.In this study,n... For a circular lobed nozzle with the exit plane displaced from the center body,adding a central plug at exit or replacing the nozzle with an alternating-lobe nozzle can improve the mixing effectiveness.In this study,numerical investigations of jet mixing in the lobed nozzles with a central plug and alternating-lobe nozzles in pumping operation were conducted.The effects of the central plugs with the wake ranging from attached to separated flow on the mixing were analyzed,along with the mechanism of improving the mixing performance in a"sword"alternating-lobe nozzle.The simulation results reveal that the large-scale mixing rate,which is dominated by streamwise vortices,is related to the intensity of the attainable heat and mass transfer in the streamwise vortices.The effects of the streamwise vortices on the normal vortex ring are virtually a manifestation of the heat and mass transfer/mixing process of the streamwise vortices.The simulation results also show that the central plug with the attached rear-flow performs better in improving the mixing effectiveness and pumping performance;on the contrary,if the rear-flow is separated,more pressure loss will be induced.In particular,a completely separated flow over the rear of the central plug will severely degrade the attainable heat and mass transfer in the streamwise vortices.For the sword alternating-lobe nozzle,wider sword deep troughs help to increase the flux of the secondary stream around the core region and delay the confluence of the primary stream in the region between the deep and shallow troughs.Thus,the mixing is improved in the middle and posterior segments.Compared to the lobed nozzle with a central plug,the improved sword alternating-lobe nozzle can achieve a higher mixing effectiveness with much less pressure loss,which is preferred in situations when the power loss of the engine is restricted. 展开更多
关键词 jet mixing lobed nozzle mixing effectiveness streamwise vortices heat and mass transfer
原文传递
Exact Variational Principle For 3-D Unsteady Heat Conduction With Second Sound
18
作者 Gaolian LIU 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第4期361-363,共3页
The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover... The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary- and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided. 展开更多
关键词 variational principle unsteady heat conduction finite element method
原文传递
Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade 被引量:3
19
作者 Ryszard Szwaba Piotr Kaczynski +1 位作者 Piotr Doerffer Janusz Telega 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期336-341,共6页
This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer an... This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer and aerodynamic measurements in the channel,which is an accurate representation of the configuration used in aeroengines.Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models.It is important to note that real engine passages do not have perfect rectangular cross sections,but include coiner fillet,ribs with fillet radii and special orientation.Therefore,this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features. 展开更多
关键词 cooling internal blade channels heat exchange transient liquid crystal method
原文传递
Numerical Simulation Using Boundary Element Method of the Mechanism to Enhance Heat Transport by Solitary Wave on Falling Thin Liquid Films
20
作者 Wen-Qiang Lu Department of Physics, Dvision of Thermal Science, Graduate School, Chinese Academy of Sciences, P.O. Box 3908, Beijing 100039, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 1993年第3期196-204,共9页
A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convectiv... A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function. Consequently, velocity and temperature gradients are eliminated, and the complete formulation is written in terms of velocity and temperature. This provides considerable reduction in storage and computational requirements while improving accuracy. The non-linear equation systems of boundary element discretization are solved by the quasi-Newton iterative scheme with Broyden's update. The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained, and the variations of Nusselt numbers along the wall-liquid interface are also given. There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave. This special flow and thermal process can be a mechanism to enhance heat transport. 展开更多
关键词 solitary wave thin falling liquid films mechanism to enhance heat transport boundary element computation of convective terms
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部