氧化升温规律是衡量采空区内自燃的重要指标。使用相似材料在室温下进行采空区升温规律相似实验是制约采空区温度场实验发展的瓶颈。根据采空区氧化升温耦合数学模型,导出了保证温度场相似比为1的相似准则,研制出了一种与煤氧化机理相...氧化升温规律是衡量采空区内自燃的重要指标。使用相似材料在室温下进行采空区升温规律相似实验是制约采空区温度场实验发展的瓶颈。根据采空区氧化升温耦合数学模型,导出了保证温度场相似比为1的相似准则,研制出了一种与煤氧化机理相似度极高的自热型相似材料,并通过DSC-TG联用实验和程序升温实验,对相似材料的放热特性、耗氧特性、活化能的变化及其与煤的传热相似性进行了实验研究。研究表明:相似材料与煤的氧化机理相似,且在室温下就开始放出大量的热,放热量可以达到煤的4.5倍,耗氧速率是煤的120倍,添加自热材料使得煤的活化能降低了20~30 k J/mol。相似材料在动态采空区实验中的应用结果表明,采空区升温规律实验值与模拟值及实测值基本吻合,可以从氧化升温耦合的角度对采空区升温规律进行模拟研究。展开更多
文摘氧化升温规律是衡量采空区内自燃的重要指标。使用相似材料在室温下进行采空区升温规律相似实验是制约采空区温度场实验发展的瓶颈。根据采空区氧化升温耦合数学模型,导出了保证温度场相似比为1的相似准则,研制出了一种与煤氧化机理相似度极高的自热型相似材料,并通过DSC-TG联用实验和程序升温实验,对相似材料的放热特性、耗氧特性、活化能的变化及其与煤的传热相似性进行了实验研究。研究表明:相似材料与煤的氧化机理相似,且在室温下就开始放出大量的热,放热量可以达到煤的4.5倍,耗氧速率是煤的120倍,添加自热材料使得煤的活化能降低了20~30 k J/mol。相似材料在动态采空区实验中的应用结果表明,采空区升温规律实验值与模拟值及实测值基本吻合,可以从氧化升温耦合的角度对采空区升温规律进行模拟研究。