The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high freq...Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.展开更多
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.
基金supported by the National Natural Science Foundation of China(Project No.51276009)Program for New Century Excellent Talents in University(No.NCET-13-0651)
文摘Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.