Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we ...Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we hypothesized that phenotypic plasticity in floral traits might help to coordinate plant-pollinator interactions and enhance plant reproductive success in changing habitats. To test this hypothesis, we investigated floral traits and pollination on three natural populations of a lousewort(Pedicularis siphonantha) ranging at different elevations, as well as two downward transplanted populations in Shangeri-La County and Deqin County, northwest Yunnan, China. The results indicated that floral traits, i.e. phenology, longevity,display size, corolla tube length and pollen production differed significantly among populations. Moreover,or the two transplanted populations, floral traits diverged from their original populations, but converged to their host populations. Although the phenotypic plasticity in floral traits might be a rapid response to abiotic factor such as warmer environment, the changes in floral traits were found to be well adapted to pollination environment of the host population. Compared with plants of their original habitats in higher elevation, the transplanted individuals advanced flowering time, shortened flower longevity, reduced floral display size and pollen production, received higher visiting frequency and yielded more seeds. These findings suggested that phenotypic plasticity of floral traits might help plants adjust their resource allocation strategy between preand post-pollination stages in response to harsh or temperate conditions, which might correspondingly meet a pollinator-poor or hyphen rich environment.This would be beneficial for the widely-distributed species to adapt to various environmental changes.展开更多
Aims As one of the most important agents driving floral evolution,pollinators shape the diversity of flowers in angiosperms.However,most previous studies have only quantified pollinators driving the evolution of a sin...Aims As one of the most important agents driving floral evolution,pollinators shape the diversity of flowers in angiosperms.However,most previous studies have only quantified pollinators driving the evolution of a single floral trait,and experimental estimates of the potential role of pollinators in shaping the evolution of floral trait associations are relatively rare.Methods We experimentally identified and estimated the pollinator-mediated directional and correlational selection on single floral traits and trait combinations across 2 years in an orchid species,Spiranthes sinensis.Important Findings Pollinators mediated directional selection for an earlier flowering start date and larger corolla size.Pollinators mediated positive correlational selection on the combinations of floral display traits and negative correlational selection on the combinations of flowering phenology and floral display traits.In addition,the strength of selection differed over time.Our results highlight the potential role of pollinators in driving the evolution of floral trait combinations and suggest that it is necessary to consider floral character functional associations when seeking to understand and predict the evolutionary trajectory of flowers in angiosperms.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 31370263 and 31770255)
文摘Phenotypic plasticity and/or pollinatormediated selection may be responsible for the changes in floral traits of plants when they are forced to live in new conditions. Although the two events could be independent, we hypothesized that phenotypic plasticity in floral traits might help to coordinate plant-pollinator interactions and enhance plant reproductive success in changing habitats. To test this hypothesis, we investigated floral traits and pollination on three natural populations of a lousewort(Pedicularis siphonantha) ranging at different elevations, as well as two downward transplanted populations in Shangeri-La County and Deqin County, northwest Yunnan, China. The results indicated that floral traits, i.e. phenology, longevity,display size, corolla tube length and pollen production differed significantly among populations. Moreover,or the two transplanted populations, floral traits diverged from their original populations, but converged to their host populations. Although the phenotypic plasticity in floral traits might be a rapid response to abiotic factor such as warmer environment, the changes in floral traits were found to be well adapted to pollination environment of the host population. Compared with plants of their original habitats in higher elevation, the transplanted individuals advanced flowering time, shortened flower longevity, reduced floral display size and pollen production, received higher visiting frequency and yielded more seeds. These findings suggested that phenotypic plasticity of floral traits might help plants adjust their resource allocation strategy between preand post-pollination stages in response to harsh or temperate conditions, which might correspondingly meet a pollinator-poor or hyphen rich environment.This would be beneficial for the widely-distributed species to adapt to various environmental changes.
基金supported by the Funds of the Science and Technology Department of Sichuan Province(2019YJ0393)Joint Funds of the National Natural Science Foundation of China and Yunnan Provincial Government(U1602263).
文摘Aims As one of the most important agents driving floral evolution,pollinators shape the diversity of flowers in angiosperms.However,most previous studies have only quantified pollinators driving the evolution of a single floral trait,and experimental estimates of the potential role of pollinators in shaping the evolution of floral trait associations are relatively rare.Methods We experimentally identified and estimated the pollinator-mediated directional and correlational selection on single floral traits and trait combinations across 2 years in an orchid species,Spiranthes sinensis.Important Findings Pollinators mediated directional selection for an earlier flowering start date and larger corolla size.Pollinators mediated positive correlational selection on the combinations of floral display traits and negative correlational selection on the combinations of flowering phenology and floral display traits.In addition,the strength of selection differed over time.Our results highlight the potential role of pollinators in driving the evolution of floral trait combinations and suggest that it is necessary to consider floral character functional associations when seeking to understand and predict the evolutionary trajectory of flowers in angiosperms.