For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable...Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).展开更多
In recent years, triboelectric nanogenerators have attracted much attention because of their unique potential in self-powered nanosensors and nanosystems. In this paper, we report a cylindrical spiral tdboelectric nan...In recent years, triboelectric nanogenerators have attracted much attention because of their unique potential in self-powered nanosensors and nanosystems. In this paper, we report a cylindrical spiral tdboelectric nanogenerator (S-TENG), which not only can produce high electric output to power display devices, but also can be used as a self-powered displacement sensor integrated on a measurement ruler. At a sliding speed of 2.5 m/s, S-TENG can generate a short-circuit current (Isc) of 30 μA and an open-circuit voltage (Voc) of 40 V. As the power source, we fabricate a transparent and flexible hand-driven S-TENG. Furthermore, we demonstrate a self-powered S-TENG-based measuring tapeline that can accurately measure and display the pulled-out distance without the need for an extra battery. The results obtained indicate that TENG-based devices have good potential for application in self-powered measurement systems.展开更多
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.
文摘Developing wireless nanodevices and nanosystems is of critical importance for sensing, medical science, environmental/infrastructure monitoring, defense technology and even personal electronics. It is highly desirable for wireless devices to be self-powered without using battery, without which most of the sensor network may be impossible. The pie- zoelectric nanogenerators have the potential to serve as self-sufficient power sources for micro/nano systems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a strain. The nanogenerator is invented by using the piezopotential as the driving force for electrons to flow in respond to a dynamic straining of piezoelectric nanowires. A gentle straining can produce an output voltage of up to 20 - 50 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as gate voltage that can effectively tune/control the charge transport across an interface/junction; electronics fabricated based on such a mechanism is coined as piezotronics, with applications in force/pressure triggercd/controlled electronic devices, sensors, logic units and memory. By using the piezotronic effect, it is showed that the optoelectronic devices fabricated using wurtzite materials can have superior performance as solar cell, photon detector and light emitting diode. Piezotronie is likely to serve as "mechanosensation" for directly interfacing biomechanieal action with silicon based technology and active flexible electronics. The paper gives a brief review about the basis of nanogenertors and piezotronics and their potential applications in smart MEMS (micro-electro-mechanical systems).
基金Acknowledgements Thanks for the support from the "thousands talents" program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 51432005 and 61405131), Beijing Natural Science Foundation (No. 4154090), Beijing City Committee of science and technology (Nos. Z131100006013004 and Z131100006013005).
文摘In recent years, triboelectric nanogenerators have attracted much attention because of their unique potential in self-powered nanosensors and nanosystems. In this paper, we report a cylindrical spiral tdboelectric nanogenerator (S-TENG), which not only can produce high electric output to power display devices, but also can be used as a self-powered displacement sensor integrated on a measurement ruler. At a sliding speed of 2.5 m/s, S-TENG can generate a short-circuit current (Isc) of 30 μA and an open-circuit voltage (Voc) of 40 V. As the power source, we fabricate a transparent and flexible hand-driven S-TENG. Furthermore, we demonstrate a self-powered S-TENG-based measuring tapeline that can accurately measure and display the pulled-out distance without the need for an extra battery. The results obtained indicate that TENG-based devices have good potential for application in self-powered measurement systems.