The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-...Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.展开更多
The patch antennas with an array of pins (pin array patch antennas) with excellent radiation characteristics are investigated for various substrate thicknesses. The radiation in the horizontal plane of a pin array p...The patch antennas with an array of pins (pin array patch antennas) with excellent radiation characteristics are investigated for various substrate thicknesses. The radiation in the horizontal plane of a pin array patch antenna is very small compared to that of a conventional patch antenna. And the increase of forward radiation and the decrease of backward radiation of a pin array patch antenna are obtained than those conventional one's. Also the half-power beamwidth of E -plane radiation pattern of a pin array patch antenna is narrower compared to that of the conventional so that the directivity is improved.展开更多
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.
基金Supported by the National Natural Science Foundation of China(No.60973118,60873075)
文摘Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.
文摘The patch antennas with an array of pins (pin array patch antennas) with excellent radiation characteristics are investigated for various substrate thicknesses. The radiation in the horizontal plane of a pin array patch antenna is very small compared to that of a conventional patch antenna. And the increase of forward radiation and the decrease of backward radiation of a pin array patch antenna are obtained than those conventional one's. Also the half-power beamwidth of E -plane radiation pattern of a pin array patch antenna is narrower compared to that of the conventional so that the directivity is improved.