A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the...A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.展开更多
In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk d...In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 2(}-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the 〉 2 mm and 〈 0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.展开更多
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)
文摘A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.
基金Supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan Period (No. 2012BAD09B03)the 111 Project of China (No. B12007)
文摘In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 2(}-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the 〉 2 mm and 〈 0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.