Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strai...Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strain U32 comprising 10 236 715 base pairs, is one of the largest prokaryotic genomes ever sequenced so far. Unlike the linear topology found in streptomycetes, this chromosome is circular, particularly similar to that of Saccharopolyspora erythraea and Nocardia farcinica, representing their close relationship in phylogeny and taxonomy. Although the predicted 9 228 protein-coding genes in the A. mediterranei genome shared the greatest number of orthologs with those of S. erythraea, it was unexpectedly followed by Streptomyces coelicolor rather than N. farcinica, indicating the distinct metabolic characteristics evolved via adaptation to diverse ecological niches. Besides a core region analogous to that common in streptomycetes, a novel 'quasicore' with typical core characteristics is defined within the non-core region, where 21 out of the total 26 gene clusters for secondary metabolite production are located. The rifamycin biosynthesis gene cluster located in the core encodes a cytochrome P450 enzyme essential for the conversion of rifamycin SV to B, revealed by comparing to the highly homologous cluster of the rifamycin B-producing strain S699 and further confirmed by genetic complementation. The genomic information of A. mediterranei demonstrates a metabolic network orchestrated not only for extensive utilization of various carbon sources and inorganic nitrogen compounds but also for effective funneling of metabolic intermediates into the secondary antibiotic synthesis process under the control of a seemingly complex regulatory mechanism.展开更多
Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum ...Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via lllumina HiSeq 2000 sequencing. A total of 86418 urtigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthra- quinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.展开更多
We investigated the anti-angiogenic effects of the water extract of HangAmDan (WEHAD),which is a crude extract of nine Korean medicinal substances of animal and plant origin.In human umbilical vein endothelial cells,W...We investigated the anti-angiogenic effects of the water extract of HangAmDan (WEHAD),which is a crude extract of nine Korean medicinal substances of animal and plant origin.In human umbilical vein endothelial cells,WEHAD significantly inhibited bFGF-induced proliferation,adhesion,migration,and capillary tube formation.We used an antibody array to perform an analysis of signaling proteins,which showed up-regulated expression of various proteins including RAD51,RAD52,and p73,and down-regulated expression of pFAK.Blood vessel formation in a chick chorioallantoic membrane (CAM) treated with WEHAD was markedly reduced in length compared with a PBS-treated control group.These results suggest that inhibition of angiogenesis by WEHAD may be the mechanism of action for the anti-cancer effects of HAD.展开更多
Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrog...Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrogel comprised of aminoglycoside antibiotics,pectinase,and oxidized dextran was developed to treat local biofilm-associated infections.The primary amines on aminoglycosides and pectinase were reacted with aldehyde groups on oxidized dextran via a pH-sensitive Schiff base linkage to form the hydrogel.Upon bacterial infection,the increased acidity triggers the release of both pectinase and aminoglycoside antibiotics.The released pectinase efficiently degrades extracellular polysaccharides surrounding the bacteria in biofilm,and thus greatly sensitizes the bacteria to aminoglycosides.The smart hydrogel efficiently eradicated biofilms and killed the embedded bacteria both in vitro and in vivo.This study provides a promising strategy for the treatment of biofilm-associated infections.展开更多
By optimizing the diffusion temperature and time,four groups of samples with different sheet resistances are achieved.The front screen printing pattern and firing temperature are fine-tuned according to the needs.The ...By optimizing the diffusion temperature and time,four groups of samples with different sheet resistances are achieved.The front screen printing pattern and firing temperature are fine-tuned according to the needs.The performance of the low-and-plateau-temperature doping recipe(as recipe A)is better than that of the low-and-multiple-temperature doping recipe(as recipe B).And the 19.24%efficiency of volume production of monocrystalline solar cells with 238.95 mm2 and 80?/sq sheet resistance is obtained in the traditional process line.0.48%more efficiency is achieved than 60?/sq due to the reduction of the phosphorus surface doping and shallow junction by the low-and-plateau-temperature diffusion recipe.The module test shows that by using two drive-in zones,not only do we have a higher efficiency,but also have a stabler and lower power loss in encapsulation manufacture.It is showed that power of a large improvement will be gotten by statistical analysis and PC1D simulation.展开更多
基金This paper is dedicated to the late Professor JS Chiao, who initiated the research in China for rifamycin production employing A. mediterranei more than 30 years ago and who continued the endeavor to resolve the mechanism of the 'nitrate stimulating effect' up to the last breath of his life. This work was supported by the National Natural Science Foundation of China (30830002), the National High Technology Research and Development Program of China (2007AA021301, 2007AA021503), and the Research Unit Fund of Li Ka Shing Institute of Health Sciences (7103506).
文摘Amycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimyco- bacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strain U32 comprising 10 236 715 base pairs, is one of the largest prokaryotic genomes ever sequenced so far. Unlike the linear topology found in streptomycetes, this chromosome is circular, particularly similar to that of Saccharopolyspora erythraea and Nocardia farcinica, representing their close relationship in phylogeny and taxonomy. Although the predicted 9 228 protein-coding genes in the A. mediterranei genome shared the greatest number of orthologs with those of S. erythraea, it was unexpectedly followed by Streptomyces coelicolor rather than N. farcinica, indicating the distinct metabolic characteristics evolved via adaptation to diverse ecological niches. Besides a core region analogous to that common in streptomycetes, a novel 'quasicore' with typical core characteristics is defined within the non-core region, where 21 out of the total 26 gene clusters for secondary metabolite production are located. The rifamycin biosynthesis gene cluster located in the core encodes a cytochrome P450 enzyme essential for the conversion of rifamycin SV to B, revealed by comparing to the highly homologous cluster of the rifamycin B-producing strain S699 and further confirmed by genetic complementation. The genomic information of A. mediterranei demonstrates a metabolic network orchestrated not only for extensive utilization of various carbon sources and inorganic nitrogen compounds but also for effective funneling of metabolic intermediates into the secondary antibiotic synthesis process under the control of a seemingly complex regulatory mechanism.
基金supported by the National Science and Technology Major Program (Grant No.2008ZX10005-004)
文摘Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via lllumina HiSeq 2000 sequencing. A total of 86418 urtigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthra- quinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.
文摘We investigated the anti-angiogenic effects of the water extract of HangAmDan (WEHAD),which is a crude extract of nine Korean medicinal substances of animal and plant origin.In human umbilical vein endothelial cells,WEHAD significantly inhibited bFGF-induced proliferation,adhesion,migration,and capillary tube formation.We used an antibody array to perform an analysis of signaling proteins,which showed up-regulated expression of various proteins including RAD51,RAD52,and p73,and down-regulated expression of pFAK.Blood vessel formation in a chick chorioallantoic membrane (CAM) treated with WEHAD was markedly reduced in length compared with a PBS-treated control group.These results suggest that inhibition of angiogenesis by WEHAD may be the mechanism of action for the anti-cancer effects of HAD.
基金the National Key R&D Program of ChinaSynthetic Biology Research(2019YFA0904500)+1 种基金the National Natural Science Foundation of China(21725402 and51672191)the Natural Science Foundation of Shanghai(19ZR1415600)。
文摘Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrogel comprised of aminoglycoside antibiotics,pectinase,and oxidized dextran was developed to treat local biofilm-associated infections.The primary amines on aminoglycosides and pectinase were reacted with aldehyde groups on oxidized dextran via a pH-sensitive Schiff base linkage to form the hydrogel.Upon bacterial infection,the increased acidity triggers the release of both pectinase and aminoglycoside antibiotics.The released pectinase efficiently degrades extracellular polysaccharides surrounding the bacteria in biofilm,and thus greatly sensitizes the bacteria to aminoglycosides.The smart hydrogel efficiently eradicated biofilms and killed the embedded bacteria both in vitro and in vivo.This study provides a promising strategy for the treatment of biofilm-associated infections.
基金supported by the National High Technology Research and("863"program)(Grant Nos.2012AA0503032011AA050504)+1 种基金Independent Innovation Project of Shandong Province(Grant Nos.2010ZHZX1A07022011ZHZX1A0701)
文摘By optimizing the diffusion temperature and time,four groups of samples with different sheet resistances are achieved.The front screen printing pattern and firing temperature are fine-tuned according to the needs.The performance of the low-and-plateau-temperature doping recipe(as recipe A)is better than that of the low-and-multiple-temperature doping recipe(as recipe B).And the 19.24%efficiency of volume production of monocrystalline solar cells with 238.95 mm2 and 80?/sq sheet resistance is obtained in the traditional process line.0.48%more efficiency is achieved than 60?/sq due to the reduction of the phosphorus surface doping and shallow junction by the low-and-plateau-temperature diffusion recipe.The module test shows that by using two drive-in zones,not only do we have a higher efficiency,but also have a stabler and lower power loss in encapsulation manufacture.It is showed that power of a large improvement will be gotten by statistical analysis and PC1D simulation.