A good cooling circle should ensure that the system can work at an appropriate temperature in the requirements of power increase,engine compartment constraint and working demands for modern engineering machinery,which...A good cooling circle should ensure that the system can work at an appropriate temperature in the requirements of power increase,engine compartment constraint and working demands for modern engineering machinery,which asks for a thorough understanding of system thermal loads before practical production.However,traditional experiment method spends a long time,costs a huge resource but lacks efficiency,whereas virtual design can avoid the shortcomings of traditional method and can analyze operating states adequately with variable loads on engine,generator,drives,battery pack and HVAC systems.Therefore,this paper focuses on a new virtual design method based on multi-dimension coupled simulation adopting Flowmaster software for initial prediction and CFX tool for further optimization.The simulation results in different operating conditions are compared and validated with experiments.Orthogonal experiment and range analysis are used to explore key parameters of cooling system.The research will be helpful in guiding future design and optimization of engineering machinery.展开更多
It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditio...It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditioning system. The progress of entransy analysis in the air-conditioning system is comprehensively investigated in the present study. Firstly missions and characteris- tics of the air-conditioning system are analyzed with emphasis on heat or mass transfer process. It is found that reducing the temperature difference, i.e. reducing the entransy dissipation helps to improve the performance. Entransy dissipations and thermal resistances of typical transfer processes in the air-conditioning system are presented. Characteristics of sensible heat transfer process and coupled heat and mass transfer processes are researched in terms of entransy dissipation analysis. Reasons leading to entransy dissipation are also clarified with the help of unmatched coefficient 4. Principles for reducing the entransy dissipation and constructing a high temperature cooling system are summarized on the basis of case studies in typical handling processes. It's recommended that reducing mixing process, improving match properties are main approaches to reduce the entransy dissipation. The present analysis is beneficial to casting light on the essence of the air-conditioning system and proposing novel approaches for performance optimization.展开更多
基金supported by the Natural Science Foundation of Fujian Province of China(Grant No.2014J01210)Knowledge Innovation of Shenzhen City of China(Grant No.JCYJ20140417162429675)National Key Technology R&D Program of China(Grant No.2013BAF07B04)
文摘A good cooling circle should ensure that the system can work at an appropriate temperature in the requirements of power increase,engine compartment constraint and working demands for modern engineering machinery,which asks for a thorough understanding of system thermal loads before practical production.However,traditional experiment method spends a long time,costs a huge resource but lacks efficiency,whereas virtual design can avoid the shortcomings of traditional method and can analyze operating states adequately with variable loads on engine,generator,drives,battery pack and HVAC systems.Therefore,this paper focuses on a new virtual design method based on multi-dimension coupled simulation adopting Flowmaster software for initial prediction and CFX tool for further optimization.The simulation results in different operating conditions are compared and validated with experiments.Orthogonal experiment and range analysis are used to explore key parameters of cooling system.The research will be helpful in guiding future design and optimization of engineering machinery.
基金supported by National Natural Science Foundation of China(Grant Nos.51422808&51521005)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(Grant No.2014BAJ02B01)the China Postdoctoral Science Foundation(Grant No.2015M570107)
文摘It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditioning system. The progress of entransy analysis in the air-conditioning system is comprehensively investigated in the present study. Firstly missions and characteris- tics of the air-conditioning system are analyzed with emphasis on heat or mass transfer process. It is found that reducing the temperature difference, i.e. reducing the entransy dissipation helps to improve the performance. Entransy dissipations and thermal resistances of typical transfer processes in the air-conditioning system are presented. Characteristics of sensible heat transfer process and coupled heat and mass transfer processes are researched in terms of entransy dissipation analysis. Reasons leading to entransy dissipation are also clarified with the help of unmatched coefficient 4. Principles for reducing the entransy dissipation and constructing a high temperature cooling system are summarized on the basis of case studies in typical handling processes. It's recommended that reducing mixing process, improving match properties are main approaches to reduce the entransy dissipation. The present analysis is beneficial to casting light on the essence of the air-conditioning system and proposing novel approaches for performance optimization.