The collected spectrum of the fiber Bragg grating(FBG) and the loss of the detected optical power are discussed with respect to the 3-dB bandwidth of a Fabry-Perot(F-P) type tunable optical filter(TOF),respectively.An...The collected spectrum of the fiber Bragg grating(FBG) and the loss of the detected optical power are discussed with respect to the 3-dB bandwidth of a Fabry-Perot(F-P) type tunable optical filter(TOF),respectively.And the optimized parameters of the TOF are obtained consequently.It is demonstrated that the relationship between the transmission wave-length of the TOF and its drive voltage is nonlinear.A new method to compensate the nonlinearity of the TOF is proposed.The linear sweeping of the transmission wavelength of the TOF is achieved through modifying the drive voltage using interpolation algorithm.It is observed that the average error and the maximum error of the transmission wavelength are reduced sharply under linear fit.The dynamic strain sensing is realized by use of a reference FBG and moving averaging algorithm in this system.展开更多
Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of...Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.展开更多
In a three-dimensional (3D) multiple- input multiple-output (MIMO) system, the base station can use both horizontal and vertical spaces, transmitting spatial beam to users more accurately. This system has caught t...In a three-dimensional (3D) multiple- input multiple-output (MIMO) system, the base station can use both horizontal and vertical spaces, transmitting spatial beam to users more accurately. This system has caught the attention of researchers in recent years. The existing research on the 3D MIMO technology is based on the assumption that the base station can acquire the ideal channel state information (CSI), which is not actually the case in real systems. Therefore, this paper introduces a limited feedback transmission scheme based on mobile station (MS) compensation in the 3D MIMO system. In this scheme, the vertical antenna gain of the 3D MIMO system compensation is assigned to the MS. Two CSI-RS ports are configured at the base station, omnidirectional CSI-RS port and partial CSI-RS port. The MS can calculate the horizontal CSI and the vertical beam gain according to omnidirectional CSI-RS port and partial CSI- RS port, respectively. Partial CSI-RS resources are used to calculate the channel after being weighted by the vertical beam vector, MS selects the optimal vertical precoding vector. Simulations show that compared with the reference strategy, the transmission scheme with limited feedback based on the MS compensation proposed in this article has more advantages. The average spectral efficiency of the system and the cell edge spectral efficiency can be greatly improved.展开更多
To enhance the speech quality that is degraded by environmental noise,an algorithm was proposed to reduce the noise and reinforce the speech.The minima controlled recursive averaging(MCRA) algorithm was used to estima...To enhance the speech quality that is degraded by environmental noise,an algorithm was proposed to reduce the noise and reinforce the speech.The minima controlled recursive averaging(MCRA) algorithm was used to estimate the noise spectrum and the partial masking effect which is one of the psychoacoustic properties was introduced to reinforce speech.The performance evaluation was performed by comparing the PESQ(perceptual evaluation of speech quality) and segSNR(segmental signal to noise ratio) by the proposed algorithm with the conventional algorithm.As a result,average PESQ by the proposed algorithm was higher than the average PESQ by the conventional noise reduction algorithm and segSNR was higher as much as 3.2 dB in average than that of the noise reduction algorithm.展开更多
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ...The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.展开更多
基金the National Natural Science Foundation of China (Contact No. 60577013)the New Cen-tury Support Program for Talented Young Teachers in Universities of Ministry of Education, China
文摘The collected spectrum of the fiber Bragg grating(FBG) and the loss of the detected optical power are discussed with respect to the 3-dB bandwidth of a Fabry-Perot(F-P) type tunable optical filter(TOF),respectively.And the optimized parameters of the TOF are obtained consequently.It is demonstrated that the relationship between the transmission wave-length of the TOF and its drive voltage is nonlinear.A new method to compensate the nonlinearity of the TOF is proposed.The linear sweeping of the transmission wavelength of the TOF is achieved through modifying the drive voltage using interpolation algorithm.It is observed that the average error and the maximum error of the transmission wavelength are reduced sharply under linear fit.The dynamic strain sensing is realized by use of a reference FBG and moving averaging algorithm in this system.
文摘Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.
基金the National Natural Science Foundation of China Grants No.61302106,51274018,the National Science & Technology Pillar Program Grants No.2013BAK06B03 Natural Science Foundation of Hebei Province No.F2014502029 and the Fundamental Research Funds for the Central Universities Grants No.2014MS100
文摘In a three-dimensional (3D) multiple- input multiple-output (MIMO) system, the base station can use both horizontal and vertical spaces, transmitting spatial beam to users more accurately. This system has caught the attention of researchers in recent years. The existing research on the 3D MIMO technology is based on the assumption that the base station can acquire the ideal channel state information (CSI), which is not actually the case in real systems. Therefore, this paper introduces a limited feedback transmission scheme based on mobile station (MS) compensation in the 3D MIMO system. In this scheme, the vertical antenna gain of the 3D MIMO system compensation is assigned to the MS. Two CSI-RS ports are configured at the base station, omnidirectional CSI-RS port and partial CSI-RS port. The MS can calculate the horizontal CSI and the vertical beam gain according to omnidirectional CSI-RS port and partial CSI- RS port, respectively. Partial CSI-RS resources are used to calculate the channel after being weighted by the vertical beam vector, MS selects the optimal vertical precoding vector. Simulations show that compared with the reference strategy, the transmission scheme with limited feedback based on the MS compensation proposed in this article has more advantages. The average spectral efficiency of the system and the cell edge spectral efficiency can be greatly improved.
文摘To enhance the speech quality that is degraded by environmental noise,an algorithm was proposed to reduce the noise and reinforce the speech.The minima controlled recursive averaging(MCRA) algorithm was used to estimate the noise spectrum and the partial masking effect which is one of the psychoacoustic properties was introduced to reinforce speech.The performance evaluation was performed by comparing the PESQ(perceptual evaluation of speech quality) and segSNR(segmental signal to noise ratio) by the proposed algorithm with the conventional algorithm.As a result,average PESQ by the proposed algorithm was higher than the average PESQ by the conventional noise reduction algorithm and segSNR was higher as much as 3.2 dB in average than that of the noise reduction algorithm.
文摘The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time.