Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence o...Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence of its weight as well as the cross-section shape parameters on the isolation performance of rigid vibration isolation mass was studied through numerical simulation.The results show that rigid vibration isolation mass can effectively impede the propagation of the medium and high frequency vibration waves,and the heavier the vibration isolation mass,the better the isolation performance.For low frequency waves,the vibration isolation effect is not so obvious;for a rectangular vibration isolation mass,the isolation performance could be effectively improved by increasing the cross-section height and reducing the cross-section width.A useful reference was provided for the application of rigid vibration isolation masses to the vibration isolation and noise reduction of ship structure.展开更多
The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-t...The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-to-two internal resonance between modes of the beam and the cable occur.Galerkin discretization and multiple time scales method are applied to derive the modulation equations of the system governing the amplitude and phase.Two sags of span ratios are defined to modulate the internal resonance.Frequency response,amplitude response,phase diagram,Poincare map,and time history curves are calculated and used to investigate the modal resonance dynamics.The results demonstrate that the beam and the cable have two resonant peaks in frequency responses,where the beam always shows hardening spring property and the cable may present hardening and softening spring properties affected by sag to span ratio.The system is prone to complex dynamic behavior with the small amplitude excitation in the primary resonance region.展开更多
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance under Grant No.153010110031
文摘Based on the principle of impedance mismatching,the performance of rigid vibration isolation mass in impeding vibration wave propagation was discussed from the perspective of wave approach.Based on FEM,the influence of its weight as well as the cross-section shape parameters on the isolation performance of rigid vibration isolation mass was studied through numerical simulation.The results show that rigid vibration isolation mass can effectively impede the propagation of the medium and high frequency vibration waves,and the heavier the vibration isolation mass,the better the isolation performance.For low frequency waves,the vibration isolation effect is not so obvious;for a rectangular vibration isolation mass,the isolation performance could be effectively improved by increasing the cross-section height and reducing the cross-section width.A useful reference was provided for the application of rigid vibration isolation masses to the vibration isolation and noise reduction of ship structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972151 and 11872176).
文摘The present study aims to investigate the dynamic behaviors and energy transfer between components of a cable stayed beam structure subjected to a concentrated load,in which the primary resonance of the beam and one-to-two internal resonance between modes of the beam and the cable occur.Galerkin discretization and multiple time scales method are applied to derive the modulation equations of the system governing the amplitude and phase.Two sags of span ratios are defined to modulate the internal resonance.Frequency response,amplitude response,phase diagram,Poincare map,and time history curves are calculated and used to investigate the modal resonance dynamics.The results demonstrate that the beam and the cable have two resonant peaks in frequency responses,where the beam always shows hardening spring property and the cable may present hardening and softening spring properties affected by sag to span ratio.The system is prone to complex dynamic behavior with the small amplitude excitation in the primary resonance region.