This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the...This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the tunneling process, charge trapping/de-trapping mechanisms, and 2-D drift-diffusion transport within the storage layer. A string of three memory cells has been simulated and evaluated for different gate stack compositions and temperatures. The simulator is able to describe the charge transport behavior along bitline and tunneling directions under different operations. Good agreement has been made with experimental data,which hence validates the implemented physical models and altogether confirms the simulation as a valuable tool for evaluating the characteristics of three-dimensional NAND flash memory.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 91230107)National Basic Research Program of China (973) (Grant No. 2013CBA01604)National High Technology Research and Development Program of China (863) (Grant No. 2015AA016501)
文摘This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the tunneling process, charge trapping/de-trapping mechanisms, and 2-D drift-diffusion transport within the storage layer. A string of three memory cells has been simulated and evaluated for different gate stack compositions and temperatures. The simulator is able to describe the charge transport behavior along bitline and tunneling directions under different operations. Good agreement has been made with experimental data,which hence validates the implemented physical models and altogether confirms the simulation as a valuable tool for evaluating the characteristics of three-dimensional NAND flash memory.