期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于遗传改进蚁群聚类算法的电力客户价值评价 被引量:31
1
作者 李泓泽 郭森 王宝 《电网技术》 EI CSCD 北大核心 2012年第12期256-261,共6页
对电力客户价值进行评价是供电企业优化服务资源配置的重要步骤。分析了蚁群聚类算法,并针对蚁群聚类算法进行评价时参数组合设置盲目性、收敛速度慢、容易陷入局部收敛的缺点,提出了运用遗传算法改进蚁群聚类算法评价电力客户价值的新... 对电力客户价值进行评价是供电企业优化服务资源配置的重要步骤。分析了蚁群聚类算法,并针对蚁群聚类算法进行评价时参数组合设置盲目性、收敛速度慢、容易陷入局部收敛的缺点,提出了运用遗传算法改进蚁群聚类算法评价电力客户价值的新方法。该新方法利用遗传算法对蚁群聚类算法的参数进行优化,进而再对电力客户价值进行聚类评价。通过实例验证表明,该新方法聚类性能有较大的提升,能够提升收敛速度和避免陷入局部收敛,并且减少了聚类评价时的主观因素,其具有准确、高效、实用等优点。最后,运用该新方法对某市供电公司的10个工业客户进行了评价,总结了不同类别电力客户的特点,对供电企业如何优化服务资源提出了建议。 展开更多
关键词 电力客户价值 评价指标体系 聚类算法 改进聚类算法 服务资源优化
下载PDF
基于蚁群算法的制冷机组调度与优化
2
作者 袁喻华 王莉 《可编程控制器与工厂自动化(PLC FA)》 2010年第1期92-95,共4页
本文详细分析了遗传算法和蚁群算法特点,提出了一种蚁群混合遗传算法求解制冷机组优化调度问题的新算法,算法思想是在制冷机组调度的前阶段利用遗传算法群体性全局搜索能力,快速形成初始解,在满足终止遗传算法的条件之后,将遗传算法调... 本文详细分析了遗传算法和蚁群算法特点,提出了一种蚁群混合遗传算法求解制冷机组优化调度问题的新算法,算法思想是在制冷机组调度的前阶段利用遗传算法群体性全局搜索能力,快速形成初始解,在满足终止遗传算法的条件之后,将遗传算法调度的较优解转化为蚁群算法所需要的初期信息素,然后利用蚁群算法所具有的正反馈性、高效等特点迅速地形成制冷机组调度的最优解。这种新算法的优点在于很好的避免了遗传算法后期搜索速度变慢,容易过快收敛和蚁群算法前期生成初始最优解较慢的缺点,从而提高了算法的整体性能。 展开更多
关键词 算法 算法 传蚁群算法
下载PDF
A Process Simulation-Based Method for Engineering Change Management 被引量:2
3
作者 YIN Leilei ZHU Haihua +1 位作者 SUN Hongwei LIAO Liangchuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期173-180,共8页
Engineering change management is a special form of problem solving where many rules must be followed to satisfy the requirements of product changes.As engineering change has great influence on the cycle and the cost o... Engineering change management is a special form of problem solving where many rules must be followed to satisfy the requirements of product changes.As engineering change has great influence on the cycle and the cost of product development,it is necessary to anticipate design changes(DCs)in advance and estimate the influence effectively.A process simulation-based method for engineering change management is proposed incorporating multiple assessment parameters.First,the change propagation model is established,which includes the formulation of change propagation influence,assessment score of DC solution.Then the optimization process of DC solution is introduced based on ant colony optimization(ACO),and an optimization algorithm is detailed to acquire the optimal DC solution automatically.Finally,a case study of belt conveyor platform is implemented to validate the proposed method.The results show that changed requirement of product can be satisfied by multiple DC solutions and the optimal one can be acquired according to the unique characteristics of each solution. 展开更多
关键词 change propagation SIMULATION ant colony algorithm design change solution
下载PDF
Ant-Colony Based Routing Algorithm in Wireless Sensor Networks 被引量:1
4
作者 Shen Yulong Xu Qijian +2 位作者 Pei Qingqi Feng Hailin Ma Jianfeng 《China Communications》 SCIE CSCD 2010年第5期120-128,共9页
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing ... In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime. 展开更多
关键词 Wireless Sensor Network routing protocol LEACH Ant-Colony Algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部