In order to determine an appropriate sampling strategy for the effective conservation of wild soybean (Glycine soja Sieb. et Zucc.) in China, a natural population from Jiangwan Airport in Shanghai was studied for its ...In order to determine an appropriate sampling strategy for the effective conservation of wild soybean (Glycine soja Sieb. et Zucc.) in China, a natural population from Jiangwan Airport in Shanghai was studied for its genetic diversity through the inter-simple sequence repeat (ISSR) marker analysis of a sample set consisting of 100 randomly collected individuals. A relatively large genetic diversity was detected among the samples based on estimation of DNA products amplified from 15 selected ISSR primers, with the similarity coefficient varying from 0.17 to 0.89. The mean expected heterozygosity (He) was 0.171 4 per locus, and Shannon index (1) was 0.271 4. The Principal Coordinate Analysis (PCA) further indicated that genetic diversity of the Jiangwan wild soybean population was not evenly distributed, instead, was presented by a mosaic or clustered distribution pattern. Correlation study between genetic diversity and number of samples demonstrated that genetic diversity increased dramatically with the increase of number of samples within 40 individuals, but the increase became slow and rapidly reached a plateau when more than 40 individuals were included in the analysis. It is concluded that (i) a sample set of approximately 35-45 individuals should be included to represent possibly high genetic diversity when conservation of a wild soybean population ex situ is undertaken; and (ii) collection of wild soybean samples should be spread out as wide as possible within a population, and a certain distance should be kept as intervals among individuals for sampling.展开更多
文摘In order to determine an appropriate sampling strategy for the effective conservation of wild soybean (Glycine soja Sieb. et Zucc.) in China, a natural population from Jiangwan Airport in Shanghai was studied for its genetic diversity through the inter-simple sequence repeat (ISSR) marker analysis of a sample set consisting of 100 randomly collected individuals. A relatively large genetic diversity was detected among the samples based on estimation of DNA products amplified from 15 selected ISSR primers, with the similarity coefficient varying from 0.17 to 0.89. The mean expected heterozygosity (He) was 0.171 4 per locus, and Shannon index (1) was 0.271 4. The Principal Coordinate Analysis (PCA) further indicated that genetic diversity of the Jiangwan wild soybean population was not evenly distributed, instead, was presented by a mosaic or clustered distribution pattern. Correlation study between genetic diversity and number of samples demonstrated that genetic diversity increased dramatically with the increase of number of samples within 40 individuals, but the increase became slow and rapidly reached a plateau when more than 40 individuals were included in the analysis. It is concluded that (i) a sample set of approximately 35-45 individuals should be included to represent possibly high genetic diversity when conservation of a wild soybean population ex situ is undertaken; and (ii) collection of wild soybean samples should be spread out as wide as possible within a population, and a certain distance should be kept as intervals among individuals for sampling.