The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simula...As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.展开更多
Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments i...Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.展开更多
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
基金Supported by the National Science Fund for Distinguished Young Scholar(51525604)111 project B16038
文摘As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.
基金supported by the National Basic Research Program of China (Grant No. 2009CB219507)
文摘Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.