QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过...QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过连接迁移更好地对移动性提供支持.但是,现实生活中的网络环境和终端设备是多样性的,并且互联网中存在着各种各样的攻击,所以QUIC在实际网络中的表现可能并不如预期.因此,探究QUIC对现有网络服务的影响是一项很重要的工作.首先介绍了QUIC的发展历史及其主要特性,并以目前使用最为广泛的2个应用场景——网页浏览和视频传输——为例,介绍并总结了国内外对QUIC在不同网络环境下的传输性能的研究分析.随后,从协议设计和系统设计2个方面列举了目前已有的对QUIC的优化工作,并对现有的对QUIC安全性分析的相关工作进行总结,还列举了目前学术界公认的QUIC所存在的安全性问题以及研究者为解决此类问题所作出的努力.最后,对现有研究成果可能的进一步提高之处进行了总结,并对QUIC带来的新的研究课题及其挑战进行了展望.展开更多
Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT:PSS, in planar p-i-n CH3NH3PbI3 perovskite-based s...Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT:PSS, in planar p-i-n CH3NH3PbI3 perovskite-based solar cells, affording a series of ITO/polythiophene/CH3NHBPbIB/C60/BCP/Ag devices. The ultrathin polythiophene film possesses good transmittance, high conductivity, a smooth surface, high wettability, compatibility with PbI2 DMF solution, and an energy level matching that of the CH3NH3PbI3 perovskite material. A promising power conversion efficiency of about 15.4%, featuring a high fill factor of 0.774, open voltage of 0.99 V, and short-circuit current density of 20.3 mA·cm^-2 is obtained. The overall performance of the devices is superior to that of cells using PEDOT:PSS. The differences of solar cells with different hole-transfer materials in charge recombination, charge transport and transfer, and device stability are further investigated and demonstrate that polythiophene is a more effective and promising hole-transporting material. This work provides a simple, prompt, controllable, and economic approach for the preparation of an effective hole-transporting material, which undoubtedly offers an alternative method in the future industrial production of perovskite solar cells.展开更多
This paper has reviewed:(1) the two unique advantages of tandem organic solar cells(OSCs) compared to single OSCs;(2) the challengings as well as strategies to develop qualified interconnecting layer(ICL) for tandem O...This paper has reviewed:(1) the two unique advantages of tandem organic solar cells(OSCs) compared to single OSCs;(2) the challengings as well as strategies to develop qualified interconnecting layer(ICL) for tandem OSCs.More specifically,firstly,the two key advantages unique to tandem OSCs as compared to single OSCs,namely minimizing sub-bandgap transmission and thermalization loss as well as realizing optical thick and electrical thin structures,have been discussed.Secondly,the ICL,as one of the most challenging issue in tandem OSCs that needs to fulfill the optical,electrical and mechanical requirements simultaneously to realize a qualified ICL has been reviewed.As one of the most challenging requirement among the three,the electrical requirement and its corresponding three different solving strategies have been discussed in detail,revealing a bright future for developing a general strategy to realizing qualified ICL composed of different hole transporting layer(HTL) and electron transporting layer(ETL).展开更多
A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylen...A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.展开更多
Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synt...Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.展开更多
Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticl...Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticles with size of 10 nm were synthesized by precipitation technique. The LEDs incorporated with the Cd S nanoparticles show a reduction in turn on voltage and luminance. When the nanoparticles are incorporated in a suitable fluorene based light emitting polymer, the luminance is increased along with the decrease of turn on voltage.展开更多
文摘QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过连接迁移更好地对移动性提供支持.但是,现实生活中的网络环境和终端设备是多样性的,并且互联网中存在着各种各样的攻击,所以QUIC在实际网络中的表现可能并不如预期.因此,探究QUIC对现有网络服务的影响是一项很重要的工作.首先介绍了QUIC的发展历史及其主要特性,并以目前使用最为广泛的2个应用场景——网页浏览和视频传输——为例,介绍并总结了国内外对QUIC在不同网络环境下的传输性能的研究分析.随后,从协议设计和系统设计2个方面列举了目前已有的对QUIC的优化工作,并对现有的对QUIC安全性分析的相关工作进行总结,还列举了目前学术界公认的QUIC所存在的安全性问题以及研究者为解决此类问题所作出的努力.最后,对现有研究成果可能的进一步提高之处进行了总结,并对QUIC带来的新的研究课题及其挑战进行了展望.
基金The authors gratefully acknowledge the financial support from the National Basic Research Program (2011CB933303 and 2013CB921904) and the National Natural Science Foundation of China (NSFC) (21321001, 21371012 and 11134001).
文摘Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT:PSS, in planar p-i-n CH3NH3PbI3 perovskite-based solar cells, affording a series of ITO/polythiophene/CH3NHBPbIB/C60/BCP/Ag devices. The ultrathin polythiophene film possesses good transmittance, high conductivity, a smooth surface, high wettability, compatibility with PbI2 DMF solution, and an energy level matching that of the CH3NH3PbI3 perovskite material. A promising power conversion efficiency of about 15.4%, featuring a high fill factor of 0.774, open voltage of 0.99 V, and short-circuit current density of 20.3 mA·cm^-2 is obtained. The overall performance of the devices is superior to that of cells using PEDOT:PSS. The differences of solar cells with different hole-transfer materials in charge recombination, charge transport and transfer, and device stability are further investigated and demonstrate that polythiophene is a more effective and promising hole-transporting material. This work provides a simple, prompt, controllable, and economic approach for the preparation of an effective hole-transporting material, which undoubtedly offers an alternative method in the future industrial production of perovskite solar cells.
基金supported by the General Research Fund(HKU711813)the Collaborative Research Fund(C7045-14E)from the Research Grants Council of Hong Kong Special Administrative Region,China,the Environment and Conservation Found Project(33/2015)from Environment and Conservation Fundthe CAS-Croucher Funding Scheme for Joint Laboratories(CAS14601)
文摘This paper has reviewed:(1) the two unique advantages of tandem organic solar cells(OSCs) compared to single OSCs;(2) the challengings as well as strategies to develop qualified interconnecting layer(ICL) for tandem OSCs.More specifically,firstly,the two key advantages unique to tandem OSCs as compared to single OSCs,namely minimizing sub-bandgap transmission and thermalization loss as well as realizing optical thick and electrical thin structures,have been discussed.Secondly,the ICL,as one of the most challenging issue in tandem OSCs that needs to fulfill the optical,electrical and mechanical requirements simultaneously to realize a qualified ICL has been reviewed.As one of the most challenging requirement among the three,the electrical requirement and its corresponding three different solving strategies have been discussed in detail,revealing a bright future for developing a general strategy to realizing qualified ICL composed of different hole transporting layer(HTL) and electron transporting layer(ETL).
基金supported by the National Natural Science Foundation of China (21125419, 50990065, 51010003, 51073058, and 20904011)National Research Project (2009CB623601 and 2009CB930604)
文摘A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.
基金the National Natural Science Foundation of China(21875133)Xijiang R&D Team(Wang X),the Science and Technology Program of Guangzhou(2019050001)Science and Technology Commission of Shanghai Municipality(19ZR1479500)。
文摘Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.
基金the funding from the Department of Science and Technology, India through PURSE program
文摘Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticles with size of 10 nm were synthesized by precipitation technique. The LEDs incorporated with the Cd S nanoparticles show a reduction in turn on voltage and luminance. When the nanoparticles are incorporated in a suitable fluorene based light emitting polymer, the luminance is increased along with the decrease of turn on voltage.