Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum chann...Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum channels. They gave the maximal probability of successful teleportation. Here we find that their operation is not the optimal and the successful probability of the teleportation is not maximum. Moreover, we give the optimal schemes operation and obtain maximal successful probability for teleportation.展开更多
We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is u...We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.展开更多
We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the gro...We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.展开更多
We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsod...We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.展开更多
In a previous work [Commun. Theor. Phys. 45 (2006) 79] a scheme was presented for approximate and conditional teleportation of an unknown atomic state in a QED-cavity without Bell-state measurement via two-photon Ja...In a previous work [Commun. Theor. Phys. 45 (2006) 79] a scheme was presented for approximate and conditional teleportation of an unknown atomic state in a QED-cavity without Bell-state measurement via two-photon Jaynes-Cummings model in the effective Hamiltonian approach. This comment presents an alternative method, based on the so called "full two-photon Jaynes-Cummings Hamiltonian approach". Accordingly, it describes the evolution of the two-photon degenerate process for arbitrary average photon number inside the cavity, as the correct way to implement teleportation in this scenario.展开更多
We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receive...We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.展开更多
The probabilistic quantum teleportation scheme [Phys. Lett. A 305 (2002) 12] is improved via two seemingly different methods (i.e., the usual aneilla method and the so-called Kraus method), respectively. The essen...The probabilistic quantum teleportation scheme [Phys. Lett. A 305 (2002) 12] is improved via two seemingly different methods (i.e., the usual aneilla method and the so-called Kraus method), respectively. The essence of the improvements is to fetch a part from the residues so that the success probability is accordingly increased. The two improved versions and a similar protocol proposed by Li et al. [Phys. Rev. A 61 (2000) 034301] are compared mutually and discussed. It is found that they are equally efficient and can reach the success probability threshold determined by the inherent entanglement of the quantum channel.展开更多
In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomi...In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.展开更多
Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states, we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different suc...Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states, we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different success probabilities. The schemes can be respectively realized with the large-detuned vacuum cavities and with the large-detuned thermal cavities by separate atomic measurements after we choose appropriate atom-cavity-field interaction time.展开更多
Teleportation of a qubit with two partially entangled qubit states linking three nodes as quantum channels is extensively studied via the usual ancilla method. With the method two realization approaches, i.e., the nod...Teleportation of a qubit with two partially entangled qubit states linking three nodes as quantum channels is extensively studied via the usual ancilla method. With the method two realization approaches, i.e., the node progression approach and the global accumulation approach, are presented. Their resource consumptions, operation complexities, and el^ciencies axe evaluated and compared. It is found that the latter approach is better than the former one besides the error is partially self-corrected. The latter approach is further improved so that two merits are resultant. The improved version is compared with a similar protocol [M.Y. Wang and F.L. Yah, Eur. Phys. J. D 54 (2009) 111]. Their merits and additional costs are exposed.展开更多
Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as...Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as thequantum channel.In order to realize teleportation,we first construct a cluster-basis of 16 orthonormal cluster states.We show that quantum teleportation can be successfully implemented with a certain probability if the receiver can adoptappropriate unitary transformations after receiving the sender's cluster-basis measurement information.In addition,animportant conclusion can be obtained that a four-qubit maximally entangled state (cluster state) can be extracted froma single copy of the cluster-class state with the same probability as the teleportation in principle.展开更多
In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor an...In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.展开更多
A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle s...A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle state in the 3D space as the quantum channels,and one of the particles in the channels is used as the controlled particle.Analysis shows that when the quantum channels are of maximal entanglement,namely the channels are composed of a 3D Bell state and a 3D GHZ state,the total success probability of the controlled teleportation can reach 1.And this scheme can be expanded to control the teleportation of an unknown D-dimensional two-particle state.展开更多
We investigate a framework of the cooperative quantum teleportation (CQT) based on non-maximally entangled state basis (NB) measurements,instead of maximally entangled state basis (MB) measurements.It is implemented w...We investigate a framework of the cooperative quantum teleportation (CQT) based on non-maximally entangled state basis (NB) measurements,instead of maximally entangled state basis (MB) measurements.It is implemented with two consecutive conventional (or direct) quantum telportations (DQT),where unknown quantum states can be transmitted in a point-to-point fashion.The security is based on the quantum-mechanical impossibility of local unitary transformations between non-maximally entangled states.It shows that the CQT can enhance the successful transmissions by self-correcting the errors introduced in the dual-teleportations.展开更多
We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entangle...We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10902083the Natural Science Foundation of Shannxi Province under Grant No. 2009GM1007
文摘Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum channels. They gave the maximal probability of successful teleportation. Here we find that their operation is not the optimal and the successful probability of the teleportation is not maximum. Moreover, we give the optimal schemes operation and obtain maximal successful probability for teleportation.
基金Supported by National Natural Science Foundation of China under Grant Nos.11004050 and 10874019Key Project of Chinese Ministry of Education under Grant No.211119+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos.10B013 and 09A013Excellent Talents Program of Hengyang Normal University of China under Grant No.2010YCJH01Science Foundation of Hengyang Normal University of China under Grant No.10B69
文摘We propose genuine (k, m)-threshold controlling schemes for controlled teleportation via multi-particle entangled states, where the teleportation of a quantum state from a sender (Alice) to a receiver (Bob) is under the control of m supervisors such that k (k≤ m) or more of these supervisors can help Bob recover the transferred state. By construction, anyone of our quantum channels is a genuine multipartite entangled state of which any two parts are inseparable. Their properties are compared and contrasted with those of the well-known GHZ, W, and linear cluster states, and also several other genuine multipartite entangled states recently introduced in the literature.
基金Supported by the Natural Science Foundation of Jiangxi,China under Grant No.2008GQW0017the Scientific Research Foundation of Jiangxi Provincial Department of Education under Grant No.GJJ09504the Foundation of Talent of Jinggang of Jiangxi Province under Grant No.2008DQ00400
文摘We present a scheme in which the N-atom W state is teleported by employing the selective interactionof a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the groundstates.The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through acavity successively and atom A is then detected.The advantage is that the present one does not involve the Bell-statemeasurement and is robust against the atomic spontaneous emission.
基金Supported by the National Natural Science Foundation of China under Grant No.10674018the National Fundamental Research Program of China under Grant No.2004CB719903
文摘We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.
文摘In a previous work [Commun. Theor. Phys. 45 (2006) 79] a scheme was presented for approximate and conditional teleportation of an unknown atomic state in a QED-cavity without Bell-state measurement via two-photon Jaynes-Cummings model in the effective Hamiltonian approach. This comment presents an alternative method, based on the so called "full two-photon Jaynes-Cummings Hamiltonian approach". Accordingly, it describes the evolution of the two-photon degenerate process for arbitrary average photon number inside the cavity, as the correct way to implement teleportation in this scenario.
基金Supported by the National Basic Research Program of China (973 Program) under Grant No.2007CB311100the National Natural Science Foundation of China under Grant No.60873191+3 种基金the National High Technology Research and Development Program of China under Grant No.2006AA01Z419the Major Research plan of the National Natural Science Foundation of China under Grant No.90604023the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.KM200810005004the Scientific Research Foundation for the Youth of Beijing University of Technology under Grant No.97007016200701
文摘We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.
基金Supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.10975001,60677001,10747146,and 10874122+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the General Fund of the Educational Committee of Anhui Province under Grant No.2006KJ260Bthe Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806 the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018
文摘The probabilistic quantum teleportation scheme [Phys. Lett. A 305 (2002) 12] is improved via two seemingly different methods (i.e., the usual aneilla method and the so-called Kraus method), respectively. The essence of the improvements is to fetch a part from the residues so that the success probability is accordingly increased. The two improved versions and a similar protocol proposed by Li et al. [Phys. Rev. A 61 (2000) 034301] are compared mutually and discussed. It is found that they are equally efficient and can reach the success probability threshold determined by the inherent entanglement of the quantum channel.
基金The project supported by the Scientific Research Fund of Education Department of Hunan Province under Grant No.06C354 and the Natural Science Foundation of Hunan Province under Grant No. 06JJ5015 tCorresponding author,
文摘In this paper, we study quantum teleportation of atomic states via a hybrid entangled state (HES) involving an atom and a cavity field. And we investigate how to implement controlled phase (CP) gates between atomic internal states and coherent states of cavity field. We also discuss the methods of distinguishing coherent states [±α〉 in a cavity. Finally, a brief discussion about the feasibility of this scheme in experiment is presented.
基金The project supported by National Key Basic Research and Development Program of China under Grant No. 2006CB921604 and National Natural Science Foundation of China under Grant Nos. 60578050 and 10434060 tCorresponding author,
文摘Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states, we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different success probabilities. The schemes can be respectively realized with the large-detuned vacuum cavities and with the large-detuned thermal cavities by separate atomic measurements after we choose appropriate atom-cavity-field interaction time.
基金Supported by the program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.10975001,60677001,10747146,and 10874122+3 种基金the science-technology fund of Anhui province for outstanding youth under Grant No.06042087 the general fund of the educational committee of Anhui province under Grant No.2006KJ260Bthe Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806
文摘Teleportation of a qubit with two partially entangled qubit states linking three nodes as quantum channels is extensively studied via the usual ancilla method. With the method two realization approaches, i.e., the node progression approach and the global accumulation approach, are presented. Their resource consumptions, operation complexities, and el^ciencies axe evaluated and compared. It is found that the latter approach is better than the former one besides the error is partially self-corrected. The latter approach is further improved so that two merits are resultant. The improved version is compared with a similar protocol [M.Y. Wang and F.L. Yah, Eur. Phys. J. D 54 (2009) 111]. Their merits and additional costs are exposed.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.06JJ5015the Scientific Research Fund of Hunan Provincial Education Department under Grant No.06C354
文摘Teleportation of an arbitrary two-qubit state with a single partially entangled state,a four-qubit linearcluster-class state,is studied.The case is more practical than previous ones using maximally entangled states as thequantum channel.In order to realize teleportation,we first construct a cluster-basis of 16 orthonormal cluster states.We show that quantum teleportation can be successfully implemented with a certain probability if the receiver can adoptappropriate unitary transformations after receiving the sender's cluster-basis measurement information.In addition,animportant conclusion can be obtained that a four-qubit maximally entangled state (cluster state) can be extracted froma single copy of the cluster-class state with the same probability as the teleportation in principle.
文摘In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.
基金supported by the National High Technology Research and Development Program of China (Nos.2007AA030112 and2009AA032708)
文摘A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle state in the 3D space as the quantum channels,and one of the particles in the channels is used as the controlled particle.Analysis shows that when the quantum channels are of maximal entanglement,namely the channels are composed of a 3D Bell state and a 3D GHZ state,the total success probability of the controlled teleportation can reach 1.And this scheme can be expanded to control the teleportation of an unknown D-dimensional two-particle state.
基金Supported by National Natural Science Foundation of China under Grant No.60902044the New Century Excellent Talents in University of China under Grant No.NCET-11-0510
文摘We investigate a framework of the cooperative quantum teleportation (CQT) based on non-maximally entangled state basis (NB) measurements,instead of maximally entangled state basis (MB) measurements.It is implemented with two consecutive conventional (or direct) quantum telportations (DQT),where unknown quantum states can be transmitted in a point-to-point fashion.The security is based on the quantum-mechanical impossibility of local unitary transformations between non-maximally entangled states.It shows that the CQT can enhance the successful transmissions by self-correcting the errors introduced in the dual-teleportations.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No.90818005)the National Natural Science Foundation of China (Grant Nos.61173187 and 61173-188)+1 种基金the Natural Science Foundation of Anhui Province (Grant No.11040606M141)the Research Program of Anhui Province Education Department (Grant No.KJ2010A009)
文摘We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.