Recent advances in non-radiative wireless power transfer(WPT)technique essentially relying on magnetic resonance and near-field coupling have successfully enabled a wide range of applications.However,WPT systems based...Recent advances in non-radiative wireless power transfer(WPT)technique essentially relying on magnetic resonance and near-field coupling have successfully enabled a wide range of applications.However,WPT systems based on double resonators are severely limited to short-or mid-range distance,due to the deteriorating efficiency and power with long transfer distance.WPT systems based on multi-relay resonators can overcome this problem,which,however,suffer from sensitivity to perturbations and fabrication imperfections.Here,we experimentally demonstrate a concept of topological wireless power transfer(TWPT),where energy is transferred efficiently via the near-field coupling between two topological edge states localized at the ends of a one-dimensional radiowave topological insulator.Such a TWPT system can be modelled as a parity-time-symmetric Su-Schrieffer-Heeger(SSH)chain with complex boundary potentials.Besides,the coil configurations are judiciously designed,which significantly suppress the unwanted cross-couplings between nonadjacent coils that could break the chiral symmetry of the SSH chain.By tuning the inter-and intra-cell coupling strengths,we theoretically and experimentally demonstrate high energy transfer efficiency near the exceptional point of the topological edge states,even in the presence of disorder.The combination of topological metamaterials,non-Hermitian physics,and WPT techniques could promise a variety of robust,efficient WPT applications over long distances in electronics,transportation,and industry.展开更多
基金sponsored by the National Natural Science Foundation of China (61625502, 11961141010, 61975176, and U19A2054)the Top-Notch Young Talents Program of China+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by Singapore Ministry of Education under Grant Nos. MOE2018-T2-1-022 (S), MOE2015-T2-1-070, MOE2016-T3-1-006, and Tier 1 RG174/16 (S)
文摘Recent advances in non-radiative wireless power transfer(WPT)technique essentially relying on magnetic resonance and near-field coupling have successfully enabled a wide range of applications.However,WPT systems based on double resonators are severely limited to short-or mid-range distance,due to the deteriorating efficiency and power with long transfer distance.WPT systems based on multi-relay resonators can overcome this problem,which,however,suffer from sensitivity to perturbations and fabrication imperfections.Here,we experimentally demonstrate a concept of topological wireless power transfer(TWPT),where energy is transferred efficiently via the near-field coupling between two topological edge states localized at the ends of a one-dimensional radiowave topological insulator.Such a TWPT system can be modelled as a parity-time-symmetric Su-Schrieffer-Heeger(SSH)chain with complex boundary potentials.Besides,the coil configurations are judiciously designed,which significantly suppress the unwanted cross-couplings between nonadjacent coils that could break the chiral symmetry of the SSH chain.By tuning the inter-and intra-cell coupling strengths,we theoretically and experimentally demonstrate high energy transfer efficiency near the exceptional point of the topological edge states,even in the presence of disorder.The combination of topological metamaterials,non-Hermitian physics,and WPT techniques could promise a variety of robust,efficient WPT applications over long distances in electronics,transportation,and industry.