A host type non-virus gene delivery car- rier, phenanthroline-β-cyclodextrin derivative host molecule, was produced which can be used as mo- lecular probe. Interactions between DZY-1 and DNA were investigated by elec...A host type non-virus gene delivery car- rier, phenanthroline-β-cyclodextrin derivative host molecule, was produced which can be used as mo- lecular probe. Interactions between DZY-1 and DNA were investigated by electrophoresis assay. Hind III enzyme inhibition assay was carried out using DNA condensates induced by host molecules or host- guest molecule complexes to explore their ability to inhibit enzyme digestion. Micro-structure of DNA condensates induced by host molecules and host-guest molecule complexes was observed by scanning electron microscope (SEM). Our work in- dicates the delivery mechanism of DZY-1 used as a gene delivery carrier and also provides a method to design and produce non-virus gene delivery carriers.展开更多
Owing to the importance of drug delivery in cancer or other diseases' therapy, the targeted drug delivery (TDD) system has been attracting enormous interest. Herein, we model the TDD system and design a novel rod-...Owing to the importance of drug delivery in cancer or other diseases' therapy, the targeted drug delivery (TDD) system has been attracting enormous interest. Herein, we model the TDD system and design a novel rod-like nanocarrier by using the coarse grained model-based density functional theory, which combines a modified fundamental measure theory for the excluded-volume effects, Wertheim's first-order thermodynamics perturbation theory for the chain connectivity and the mean field approximation for van der Waals attraction. For comparison, the monomer nanocarrier TDD system and the no nanocarrier one are also investigated. The results indicate that the drug delivery capacity of rod-like nanocarriers is about 62 times that of the no nanocarrier one, and about 6 times that of the monomer nanocarriers. The reason is that the rod-like nanocarriers would self-assemble into the smectic phase perpendicular to the membrane surface. It is the self-assembly of the rod-like nanocarriers that yields the driving force for the targeted delivery of drugs inside the cell membrane. By contrast, the conventional monomer nanocarrier drug delivery system lacks the driving force to deliver the drugs into the cell membrane. In short, the novel rod-like nanocarrier TDD system may improve the drug delivery efficiency. Although the model in this work is simple, it is expected that the system may provide a new perspective for cancer targeted therapy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.90403140)the Tianjin Natural Science Foundation(Grant No.TJ043801111)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(Grant No.B04970).
文摘A host type non-virus gene delivery car- rier, phenanthroline-β-cyclodextrin derivative host molecule, was produced which can be used as mo- lecular probe. Interactions between DZY-1 and DNA were investigated by electrophoresis assay. Hind III enzyme inhibition assay was carried out using DNA condensates induced by host molecules or host- guest molecule complexes to explore their ability to inhibit enzyme digestion. Micro-structure of DNA condensates induced by host molecules and host-guest molecule complexes was observed by scanning electron microscope (SEM). Our work in- dicates the delivery mechanism of DZY-1 used as a gene delivery carrier and also provides a method to design and produce non-virus gene delivery carriers.
基金supported by the National Natural Science Foundation of China (20874005, 20736002, 20821004)the National Basic Research Program of China (2011CB706900)+1 种基金Huo Yingdong Fundamental Research Foundation (121070)Novel Team (IRT0807) from Ministry of Education and the Chemical Grid Project of BUCT
文摘Owing to the importance of drug delivery in cancer or other diseases' therapy, the targeted drug delivery (TDD) system has been attracting enormous interest. Herein, we model the TDD system and design a novel rod-like nanocarrier by using the coarse grained model-based density functional theory, which combines a modified fundamental measure theory for the excluded-volume effects, Wertheim's first-order thermodynamics perturbation theory for the chain connectivity and the mean field approximation for van der Waals attraction. For comparison, the monomer nanocarrier TDD system and the no nanocarrier one are also investigated. The results indicate that the drug delivery capacity of rod-like nanocarriers is about 62 times that of the no nanocarrier one, and about 6 times that of the monomer nanocarriers. The reason is that the rod-like nanocarriers would self-assemble into the smectic phase perpendicular to the membrane surface. It is the self-assembly of the rod-like nanocarriers that yields the driving force for the targeted delivery of drugs inside the cell membrane. By contrast, the conventional monomer nanocarrier drug delivery system lacks the driving force to deliver the drugs into the cell membrane. In short, the novel rod-like nanocarrier TDD system may improve the drug delivery efficiency. Although the model in this work is simple, it is expected that the system may provide a new perspective for cancer targeted therapy.