Effective electron selective layer (ESL) is critical for the power conversion efficiency in organometal halide- based perovskite solar cells (PSCs). In this work, a spincoating process has been developed to fabric...Effective electron selective layer (ESL) is critical for the power conversion efficiency in organometal halide- based perovskite solar cells (PSCs). In this work, a spincoating process has been developed to fabricate high quality nanocrystalline SnO2 film at 100℃ without further sintering at higher temperature. When used as ESL in PSCs, such SnO2 film shows greater electron extraction ability and higher efficiency than TiO2 film processed under similar condition, as evidenced by the efficient time-resolved photoluminescence (TRPL) quenching SnO2/CH3NH3PbI3 film. As a resuit, the SnO2-based PSCs possess higher open circuit voltage of 0.91 V, short circuit current density of 20.73 mA cm^-2, and fill factor of 64.25%, corresponding to a conversion efficiency of 12.10%, compared with 7.16% of TiO2-based PSCs. This demonstrates the great potential of applying spin-coating sintering-free process for the low-cost and large-scale manufacturing of PSCs.展开更多
Two naphthalene diimide (NDI) and perylene diimide (PDI) based n-type water/alcohol soluble small molecules (NFN and PFP) are designed and utilized as electron transport layers (ETLs) for organic solar cells ...Two naphthalene diimide (NDI) and perylene diimide (PDI) based n-type water/alcohol soluble small molecules (NFN and PFP) are designed and utilized as electron transport layers (ETLs) for organic solar cells (OSCs). NFN and PFP are synthesized by using Sonogashira coupling from alkynyl modified fluorene with mono-bromo substituted NDI and PDI. Density functional theory study results of NFN and PFP show that they possess excellent planarity due to the employment of triple bonds as connection units. Moreover, it was shown by electron paramagnetic resonance study that both NFN and PFP possess obvious self-doping behaviors, which may effectively enhance their charge transporting capability as ETLs in OSCs. Power conversion efficiencies of 8.59% and 9.80% can be achieved for OSCs with NFN and PFP as ETLs, respectively. The higher power conversion efficiency (PCE) of PFP based photovoltaic device is originated from the stronger doping property and higher mobility of PFR展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0201001)National Natural Science Foundation of China(11627801,51102172)+3 种基金Science and Technology Plan of Shenzhen City(JCYJ20160331191436180)Natural Science Foundation for Outstanding Young Researcher in Hebei Province(E2016210093)the Key Program of Educational Commission of Hebei Province of China(ZD2016022)the Youth Top-notch Talents Supporting Plan of Hebei Province,Hebei Provincial Key Laboratory of Traffic Engineering materials and Hebei Key Discipline Construction Project
文摘Effective electron selective layer (ESL) is critical for the power conversion efficiency in organometal halide- based perovskite solar cells (PSCs). In this work, a spincoating process has been developed to fabricate high quality nanocrystalline SnO2 film at 100℃ without further sintering at higher temperature. When used as ESL in PSCs, such SnO2 film shows greater electron extraction ability and higher efficiency than TiO2 film processed under similar condition, as evidenced by the efficient time-resolved photoluminescence (TRPL) quenching SnO2/CH3NH3PbI3 film. As a resuit, the SnO2-based PSCs possess higher open circuit voltage of 0.91 V, short circuit current density of 20.73 mA cm^-2, and fill factor of 64.25%, corresponding to a conversion efficiency of 12.10%, compared with 7.16% of TiO2-based PSCs. This demonstrates the great potential of applying spin-coating sintering-free process for the low-cost and large-scale manufacturing of PSCs.
基金supported by the National Natural Science Foundation of China(21634004)
文摘Two naphthalene diimide (NDI) and perylene diimide (PDI) based n-type water/alcohol soluble small molecules (NFN and PFP) are designed and utilized as electron transport layers (ETLs) for organic solar cells (OSCs). NFN and PFP are synthesized by using Sonogashira coupling from alkynyl modified fluorene with mono-bromo substituted NDI and PDI. Density functional theory study results of NFN and PFP show that they possess excellent planarity due to the employment of triple bonds as connection units. Moreover, it was shown by electron paramagnetic resonance study that both NFN and PFP possess obvious self-doping behaviors, which may effectively enhance their charge transporting capability as ETLs in OSCs. Power conversion efficiencies of 8.59% and 9.80% can be achieved for OSCs with NFN and PFP as ETLs, respectively. The higher power conversion efficiency (PCE) of PFP based photovoltaic device is originated from the stronger doping property and higher mobility of PFR