期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于深度传递迁移学习的遥感影像分类方法 被引量:15
1
作者 林禹 赵泉华 李玉 《地球信息科学学报》 CSCD 北大核心 2022年第3期495-507,共13页
面对实际的遥感影像分类任务,采用深度神经网络的方法存在的最大问题是缺乏充足的标注样本,如何使用较少的标注样本实现较高精度的遥感影像分类,是目前需要解决的问题。ImageNet作为世界上最大的图像识别数据集,在其上训练出的模型有着... 面对实际的遥感影像分类任务,采用深度神经网络的方法存在的最大问题是缺乏充足的标注样本,如何使用较少的标注样本实现较高精度的遥感影像分类,是目前需要解决的问题。ImageNet作为世界上最大的图像识别数据集,在其上训练出的模型有着丰富的底层特征。对ImageNet预训练模型进行微调是最常见的迁移学习方法,能够一定程度利用其丰富的底层特征,提高分类精度。但ImageNet影像特征与遥感影像差距较大,对分类效果提升有限。为了解决上述问题,本文基于传递迁移学习思想,结合深度神经网络,提出一种基于深度传递迁移学习的遥感影像分类方法。该方法通过构建以开源遥感场景识别数据集为源域的中间域,并以ImageNet预训练权重为源域、待分类遥感影像为目标域进行迁移学习,提高遥感影像分类精度。首先,以ImageNet预训练VGG16网络为基础,为加速卷积层权重更新而将全连接层替换为全局平均池化层,构建GAP-VGG16,使用中间域数据集训练ImageNet预训练GAP-VGG16以获取权重;然后,以SegNet网络为基础,在SegNet中加入卷积层设计了T-SegNet,以对获取的权重进一步地提取。最后,将获取的权重迁移到T-SegNet中,使用目标域数据集训练,实现遥感影像分类。本文选取Aerial Image Dataset和UC Merced Land-Use DataSet作为中间域数据集的数据源,资源三号盘锦地区影像为目标域影像,并分别选取了50%和25%数量的训练样本进行实验。实验结果表明,在50%和25%数量的训练样本下,本文方法分类结果相比SegNet的Kappa系数分别提高了0.0459和0.0545,相比ImageNet预训练SegNet的Kappa系数分别提高了0.0377和0.0346,且在样本数较少的类别上,本文方法分类精度提升更明显。 展开更多
关键词 遥感影像分类 深度神经网络 迁移学习 VGG16 SegNet 传递迁移学习 资源三号影像 全局平均池化
原文传递
基于样本对元学习的小样本图像分类方法 被引量:14
2
作者 李维刚 甘平 +1 位作者 谢璐 李松涛 《电子学报》 EI CAS CSCD 北大核心 2022年第2期295-304,共10页
本文针对小样本图像分类问题,提出一种基于样本对的元学习(Pairwise-based Meta Learning,PML)方法.利用传递迁移学习对预训练好的Resnet50模型进行微调,得到一个更适应小样本任务的特征编码器,将该特征编码器作为元学习模型的初始特征... 本文针对小样本图像分类问题,提出一种基于样本对的元学习(Pairwise-based Meta Learning,PML)方法.利用传递迁移学习对预训练好的Resnet50模型进行微调,得到一个更适应小样本任务的特征编码器,将该特征编码器作为元学习模型的初始特征编码器来训练模型,进一步增强了元学习模型的泛化能力;同时,本文还基于支持集与查询集样本之间的相似性提出元损失函数(Meta Loss,ML),其考虑了特征空间中查询集所有样本的相互关系,以此来缩小正样本类内距离,增加正负样本类间距离,从而提高分类精度.实验结果表明,本文的方法在1-shot、5-shot任务上分别达到了77.65%、89.65%的分类精度,较最新的元学习方法Meta-baseline分别提高7.38%、5.65%. 展开更多
关键词 小样本图像 传递迁移学习 学习 元损失函数
下载PDF
改进SegNet与迁移学习的遥感建筑物分割方法 被引量:5
3
作者 林禹 赵泉华 +1 位作者 沈昭宇 李玉 《测绘科学》 CSCD 北大核心 2022年第6期78-89,共12页
针对传统SegNet应用于遥感影像建筑物分割出现分割不连续的问题,该文提出了一种改进的SegNet模型,并引入迁移学习方法,以提高遥感影像建筑物分割精度。以SegNet为基础,加入能够提取多尺度特征的改进空洞空间卷积池化金字塔模块,并引入... 针对传统SegNet应用于遥感影像建筑物分割出现分割不连续的问题,该文提出了一种改进的SegNet模型,并引入迁移学习方法,以提高遥感影像建筑物分割精度。以SegNet为基础,加入能够提取多尺度特征的改进空洞空间卷积池化金字塔模块,并引入跳层连接使分割结果更为精细。选取了FCN、SegNet、载入ImageNet预训练权重参数的SegNet作为对比算法,对遥感建筑物分割数据集Inria Aerial Image Labeling Dataset进行训练和测试。实验结果表明,在有限的迭代次数及实验区域内,该文算法拥有更好的分割效果和更强的泛化能力。 展开更多
关键词 建筑物分割 SegNet 空洞空间卷积池化金字塔 传递迁移学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部