The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. T...Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.展开更多
Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual...Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual physical properties of pentane. The relationships between wall temperature and inlet temperature, mass flow rate, wall heat flux, inlet pressure, as well as center stream temperature are obtained. The results suggest that the heat transfer deterioration occurs when the fuel temperature approaches the pseudo-critical temperature, and the wall temperature increases rapidly and heat transfer coefficient decreases sharply. The decrease of wall heat flux, as well as the increase of mass flow rate and inlet pressure makes the starting point of the heat transfer deterioration and the peak point of the wall temperature move backward. The wall temperature increment induced by heat transfer deterioration decreases, which could reduce the severity of the heat transfer deterioration. The relational expression of the heat transfer deterioration critical heat flux derives from the relationship of the mass flow rate and the inlet pressure.展开更多
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
文摘Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.
基金the funding supports from National Natural Science Foundation of China (Grant No.51076035 and No.11079017), HIT.NSRIF.2008. 24
文摘Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual physical properties of pentane. The relationships between wall temperature and inlet temperature, mass flow rate, wall heat flux, inlet pressure, as well as center stream temperature are obtained. The results suggest that the heat transfer deterioration occurs when the fuel temperature approaches the pseudo-critical temperature, and the wall temperature increases rapidly and heat transfer coefficient decreases sharply. The decrease of wall heat flux, as well as the increase of mass flow rate and inlet pressure makes the starting point of the heat transfer deterioration and the peak point of the wall temperature move backward. The wall temperature increment induced by heat transfer deterioration decreases, which could reduce the severity of the heat transfer deterioration. The relational expression of the heat transfer deterioration critical heat flux derives from the relationship of the mass flow rate and the inlet pressure.