期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于稀疏理论的DAE在公路事故伤亡预测应用
被引量:
1
1
作者
张文婧
陈治亚
+1 位作者
冯芬玲
李万
《计算机工程与应用》
CSCD
北大核心
2019年第7期241-247,共7页
准确实现公路事故伤亡人数预测,对于把握我国未来交通安全形势、实现运输系统优化具有重要意义。将基于稀疏理论的深度自动编码器(Deep Auto-encoder)引入公路事故伤亡人数预测,利用公路事故伤亡人数2000—2015年历史数据构建伤亡人数...
准确实现公路事故伤亡人数预测,对于把握我国未来交通安全形势、实现运输系统优化具有重要意义。将基于稀疏理论的深度自动编码器(Deep Auto-encoder)引入公路事故伤亡人数预测,利用公路事故伤亡人数2000—2015年历史数据构建伤亡人数预测模型,得到死亡及受伤人数平均误差率分别为1.69%、1.53%;采用伤亡人数的影响指标汽车保有量、国内生产总值、公路总里程、人均道路面积的同时段历史数据构建预测模型,得到死伤人数平均误差率分别为1.76%、2.13%;对比发现将DAE运用到公路事故伤亡人数预测精度较高,且采用伤亡人数时间序列数据较影响指标预测精度更高,故使用前者对2016—2020年数据进行预测,得出未来我国公路事故死亡人数将在一定时间内保持平稳,而受伤人数将会明显下降。
展开更多
关键词
深度学习
自编码
人工神经网络
伤亡预测模型
稀疏理论
下载PDF
职称材料
题名
基于稀疏理论的DAE在公路事故伤亡预测应用
被引量:
1
1
作者
张文婧
陈治亚
冯芬玲
李万
机构
中南大学交通运输工程学院
出处
《计算机工程与应用》
CSCD
北大核心
2019年第7期241-247,共7页
基金
国家重点研发计划项目(No.2017YFB1201300)
文摘
准确实现公路事故伤亡人数预测,对于把握我国未来交通安全形势、实现运输系统优化具有重要意义。将基于稀疏理论的深度自动编码器(Deep Auto-encoder)引入公路事故伤亡人数预测,利用公路事故伤亡人数2000—2015年历史数据构建伤亡人数预测模型,得到死亡及受伤人数平均误差率分别为1.69%、1.53%;采用伤亡人数的影响指标汽车保有量、国内生产总值、公路总里程、人均道路面积的同时段历史数据构建预测模型,得到死伤人数平均误差率分别为1.76%、2.13%;对比发现将DAE运用到公路事故伤亡人数预测精度较高,且采用伤亡人数时间序列数据较影响指标预测精度更高,故使用前者对2016—2020年数据进行预测,得出未来我国公路事故死亡人数将在一定时间内保持平稳,而受伤人数将会明显下降。
关键词
深度学习
自编码
人工神经网络
伤亡预测模型
稀疏理论
Keywords
deep learning
auto-encoder
artificial neural network
casualty forecast model
sparse theory
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
U491.31 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于稀疏理论的DAE在公路事故伤亡预测应用
张文婧
陈治亚
冯芬玲
李万
《计算机工程与应用》
CSCD
北大核心
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部