In this paper, a incremental form of constitutive laws for creeping studies are proposed. The equations are based on the concept of creep hardening surface. Damage effects were introduced to the new constitutive relat...In this paper, a incremental form of constitutive laws for creeping studies are proposed. The equations are based on the concept of creep hardening surface. Damage effects were introduced to the new constitutive relations to study solids creeping effects with pre-existing damages. The present formula is easy to be adopted into other numerical procedures such as finite element methods.展开更多
Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people...Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.展开更多
文摘In this paper, a incremental form of constitutive laws for creeping studies are proposed. The equations are based on the concept of creep hardening surface. Damage effects were introduced to the new constitutive relations to study solids creeping effects with pre-existing damages. The present formula is easy to be adopted into other numerical procedures such as finite element methods.
基金supported by the National Natural Science Foundation of China (Grant No. 11072076)
文摘Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.