To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth...To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.展开更多
Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
基金funded by the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shangdong Province,China(No.ZR2020QD052)China Postdoctoral Science Foundation(No.2019M652386)。
文摘To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.