Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and as...Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu.展开更多
基金Foundation item: the National Natural Science Foundation of China (No. 10771141) the Natural Science Foundation of Zhejiang Province (Y605191) the Natural Science Foundation of Heilongjiang Province (No. A0211) and the Scientific Research Foundation from Zhejiang Province Education Committee (No. 20051897).
文摘Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu.