Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifa...Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifacts. First, the projection of the even and odd lines along phase-encoding direction in hybrid-space was used to estimate the phase difference between odd and even echoes. Secondly, we fit the phase difference and used it to correct the phase of even or odd echoes. Finally, the corrected image was obtained by performing the inverse Fourier transform along phase-encoding direction in hybrid-space. The experimental results show that linear and nonlinear differences can be corrected and the intensity of ghost artifacts is significantly reduced. The effectiveness of the proposed method is demonstrated in ghost artifact removal.展开更多
During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus ...During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus location. Because the genetic algorithm (GA) has characteristics of parallel, random and adaptive stochastic searching, a correction method of motion artifacts is presented based on the algorithm. The method can correct the phase error in K-space signals step by step. Experiments show that the motion artifacts in MRI can be effectively suppressed by using the method.展开更多
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identif...Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.展开更多
文摘Ghost artifacts occur in magnetic resonance imaging (MRI) reconstruction because odd and even echoes have different phase offsets. A method based on the projection in hybrid-space is described to remove ghost artifacts. First, the projection of the even and odd lines along phase-encoding direction in hybrid-space was used to estimate the phase difference between odd and even echoes. Secondly, we fit the phase difference and used it to correct the phase of even or odd echoes. Finally, the corrected image was obtained by performing the inverse Fourier transform along phase-encoding direction in hybrid-space. The experimental results show that linear and nonlinear differences can be corrected and the intensity of ghost artifacts is significantly reduced. The effectiveness of the proposed method is demonstrated in ghost artifact removal.
文摘During the process of magnetic resonance imaging (MRI), the patient motion causes phase errors in collected signals and induces motion artifacts in the reconstructed image. Severe artifacts interfere with the focus location. Because the genetic algorithm (GA) has characteristics of parallel, random and adaptive stochastic searching, a correction method of motion artifacts is presented based on the algorithm. The method can correct the phase error in K-space signals step by step. Experiments show that the motion artifacts in MRI can be effectively suppressed by using the method.
基金Supported by the Natural Science Foundation of Tianjin(No.15JCYBJC15500)
文摘Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.