By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\...By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\}{\text{ }}_{\tau< 0} $ given by ( a1, …, an). Assume that either a1, …, an are positive rational numbers or $m{\text{ = }}\sum\limits_{j = 1}^n {\alpha _j \alpha _j } $ for some $\alpha {\text{ = }}\left( {\alpha _1 ,{\text{ }} \ldots {\text{ }},\alpha _n } \right) \in l _ + ^n $ Then the dimension of the space of polynomial solutions of the equationp[u] = 0 on ?n must be infinite展开更多
基金the National Natural Science Foundation of China (Grnat No. 19971068) .
文摘By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\}{\text{ }}_{\tau< 0} $ given by ( a1, …, an). Assume that either a1, …, an are positive rational numbers or $m{\text{ = }}\sum\limits_{j = 1}^n {\alpha _j \alpha _j } $ for some $\alpha {\text{ = }}\left( {\alpha _1 ,{\text{ }} \ldots {\text{ }},\alpha _n } \right) \in l _ + ^n $ Then the dimension of the space of polynomial solutions of the equationp[u] = 0 on ?n must be infinite